
© 2014 UPnP Forum. All Rights Reserved.

UPnP Device Architecture 2.0
Document Revision Date: September 1, 2014

© 2014 UPnP Forum. All rights reserved.

The UPnP® Word Mark and UPnP® Logo are certification marks owned by UPnP Forum.

This Standardized DCP Framework has been adopted as a Standardized DCP Framework by the
Steering Committee of the UPnP Forum, pursuant to Section 2.1(c)(v) of the UPnP Forum
Membership Agreement. UPnP Forum Members have rights and l icenses defined by Section 3 of

the UPnP Forum Membership Agreement to use and reproduce the Standardized DCP
Framework in UPnP Compliant Devices. All such use is subject to al l of the provisions of the
UPnP Forum Membership Agreement.

THE UPNP FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL PROPERTY
RIGHTS EXIST IN THE STANDARDIZED DCPS AND STANDARDIZED DCP FRAMEWORKS.

THE STANDARDIZED DCPS AND STANDARDIZED DCP FRAMEWORKS ARE PROVIDED "AS
IS" AND "WITH ALL FAULTS". THE UPNP FORUM MAKES NO WARRANTIES, EXPRESS,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE STANDARDIZED DCPS

AND STANDARDIZED DCP FRAMEWORKS, INCLUDING BUT NOT LIMITED TO ALL IMPLIED
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A
PARTICULAR PURPOSE, OF REASONABLE CARE OR WORKMANLIKE EFFORT, OR

RESULTS OR OF LACK OF NEGLIGENCE.

© 2014 UPnP Forum. All Rights Reserved.

 — 1 —

© 2014 UPnP Forum. All Rights Reserved.

Authors* Company

Andrew Donoho IBM

Bryan Roe Intel

Maarten Bodlaender Philips

John Gildred Pioneer

Alan Messer Samsung

YoonSoo Kim Samsung

Bruce Fairman Sony

Jonathan Tourzan Sony

*Note: The UPnP Forum in no way guarantees the accuracy or completeness of this contributor list and in no way
implies any rights for or support from those members listed.

 — 2 —

© 2014 UPnP Forum. All Rights Reserved.

Contributors* Company

Alan Presser AllegroSoft

Devon Kemp Canon

Lee Farrell Canon

Wouter van der Beek Cisco

William Lupton Conexant

Grzegorz Kafel Comarch

Shinichi Tsuruyama Epson

Shivaun Albright HP

John Ritchie Intel

Mark Walker Intel

Colleen Evans Microsoft

Henry Rawas Microsoft

Toby Nixon Microsoft

Trevor Freeman Microsoft

Cathy Chan Nokia

Franklin Reynolds Nokia

Jose Costa-Requena Nokia

Yinghua Ye Nokia

Geert Knapen Philips

Jarno Guidi Philips

Lex Heerink Philips

Tom McGee Philips

Andrew Fiddian-Green Siemens

Markus Wischy Siemens

John Fuller Sony

Authors of Annex A* Company

Chris Grundeman CableLabs

Bich Nguyen Cisco

Barbara Stark AT&T

Clarke Stevens CableLabs

 — 3 —

© 2014 UPnP Forum. All Rights Reserved.

Authors of Annex C* Company

Clar ke Stevens Cable Labs Inc

Wouter v an der Beek C is co Systems

Keit h Miller (Chair) I nt el

Jeffr ey Kang TP V is ion

Mateusz Belicki Comarch

Contributors of Annex C* Company

Clar ke Stevens Cable Labs Inc

Wouter v an der Beek C is co Systems

Peter Waher C lay ster

Bich Nguyen GoPr o

Keit h Miller I nt el

Jeffr ey Kang TP V is ion

Mateusz Belicki Comarch

*No te: The UPnP Forum in no way guarantees the accuracy o r completeness of this author list and in no way

imp lies any r ights for o r support from those members listed. This list is not the specifications’ contributor
list that is kept on the UPnP Forum’s website.

 — 4 —

© 2014 UPnP Forum. All Rights Reserved.

CONTENTS

Int roduction . 9

0 Addressing . 15

0.1 Determining whether to use Auto-IP . 16

0.2 Choosing an address. 16

0.3 Test ing the address . 16

0.4 Forwarding rules . 17

0.5 Periodic check ing for dynamic address availabil ity . 17

0.6 Device naming and DNS interaction . 17

0.7 Name to IP address resolution . 18

0.8 References . 18
1 Discovery . 18

1.1 SSDP message format. 21

1.1.1 SSDP Start -l ine . 21

1.1.2 SSDP message header fields . 21

1.1.3 SSDP header field extensions. 22

1.1.4 UUID format and recommended generation algorithms. 22

1.1.5 SSDP process ing rules . 22

1.2 Advert isement . 23

1.2.1 Advert isement protocols and standards . 23

1.2.2 Device available - NOTIFY with ssdp:alive . 24

1.2.3 Device unavailable -- NOTIFY with ssdp:byebye. 31

1.2.4 Device Update – NOTIFY with ssdp:update . 32

1.3 Search . 34

1.3.1 Search protocols and standards . 35

1.3.2 Search request with M-SEARCH . 35

1.3.3 Search response . 39

1.4 References . 42

2 Descript ion . 42

2.1 Generic requirements on HTTP usage . 45

2.2 Generic requirements on XML usage. 48

2.3 Device descript ion . 48

2.4 UPnP Device Template . 54

2.5 Service descript ion . 54

2.5.1 Defining and processing extended data types . 61

2.5.2 String equivalents of ex tended data types. 63

2.5.3 Generic requirements . 64

2.5.4 Ordering of Elements. 64

2.5.5 Versioning . 64

2.6 UPnP Service Template . 65

2.7 Non-standard vendor extens ions and limitations. 65

2.7.1 Placement of Additional Elements and Att ributes . 66

2.8 UPnP Device Schema . 67

2.9 UPnP Service Schema.. 67

 — 5 —

© 2014 UPnP Forum. All Rights Reserved.

2.10 UPnP Datatype Schema . 67

2.11 Retrieving a description using HTTP . 67

2.12 References . 70
3 Control . 71

3.1 Control protocols . 73

3.1.1 SOAP Profile . 73

3.2 Actions . 77

3.2.1 Action invocation . 77

3.2.2 Action Response . 80

3.2.3 UPnP Act ion Schema . 82

3.2.4 Recommendations and addit ional requirements. 83

3.2.5 Action error response . 83

3.2.6 UPnP Error Schema . 86

3.3 Query for variable. 87

3.4 References . 87
4 Event ing . 87

4.1 Unicast event ing . 88

4.1.1 Subscript ion . 89

4.1.2 SUBSCRIBE with NT and CALLBACK . 91

4.1.3 Renewing a subscript ion with SUBSCRIBE with SID. 94

4.1.4 Canceling a subscription with UNSUBSCRIBE . 95

4.2 Mult icast Event ing . 97

4.3 Event messages. 98

4.3.1 Error Cases. 99

4.3.2 Unicast event ing: Event messages: NOTIFY.. 99

4.3.3 Mult icast Event ing: Event messages: NOTIFY . 103

4.4 UPnP Event Schema . 106

4.5 Augment ing the UPnP Device and Service Schemas . 106

4.6 References . 106
5 Presentation . 107

5.1 References . 108

Annex A (normat ive) IP Vers ion 6 Support. 109

A.0 Note (informative) . 109

A.1 Int roduction. 109

A.2 General Princ iples . 110

A.2.1 UPnP Device Architecture V1.0 . 110

A.2.2 UPnP Device Architecture V2.0 . 110

A.2.3 IPv6 and Dual Stack . 110

A.2.4 Device operat ion . 112

A.2.5 Control point operation. 112

A.3 Addressing . 112

A.3.1 UPnP Messaging on IPv6 Interfaces. 113

A.3.2 Summary of boot/startup process . 113

A.3.3 Address Select ion and RFC 6724 . 113

A.4 Discovery . 113

A.4.1 OPT and NLS . 114

 — 6 —

© 2014 UPnP Forum. All Rights Reserved.

A.4.2 Advert isement. 114

A.4.3 Advert isement: Device unavailable. 115

A.4.4 Advert isement: Device update . 115

A.4.5 Search . 115

A.4.6 Search response . 116

A.5 Descript ion . 116

A.6 Control . 116

A.7 Event ing. 116

A.8 Presentation. 117

A.9 References . 117

A.9.1 Normative . 117

A.9.2 Informat ive. 118
Annex B Schemas . 119

B.1 UPnP Device Schema . 119

B.2 UPnP Service Schema.. 123

B.3 UPnP Control Schema . 128

B.4 UPnP Error Schema . 129

B.5 UPnP Event Schema . 129

B.6 UPnP Cloud Schema . 130

B.7 Schema references . 132

Annex C Cloud . 133

C.1 Int roduction. 133

C.1.1 What is UPnP™ Cloud Technology (UCA)? . 133

C.1.2 Audience . 133

C.1.3 In this Annex . 133

C.1.4 UDA compared to UCA . 135

C.1.5 UCA General Communications Paths. 137

C.1.6 UCA Specific Communicat ion Paths . 138

C.1.7 UCA Steps as Analogies to UDA . 139

C.2 Terms and Definit ions. 141

C.2.1 Acronyms . 141

C.2.2 General Cloud Terms and Definitions . 141

C.2.3 Device and Control Point Terms and Definitions . 142

C.2.4 Service Terms and Definitions . 142

C.2.5 Groups. 142

 References . 143

C.3 143

C.4 General XMPP Features . 144

C.4.1 XMPP Jabber IDs or JIDs . 144

C.5 Creat ing a Device or Control Point Resource. 145

C.5.1 Finding a UCS . 145

C.5.2 Account Creat ion . 146

C.5.3 Authentication. 146

C.5.4 Binding Devices and Control Points as a Resource . 149

C.5.5 Embedded Devices . 152

C.6 Presence and Discovery. 153

 — 7 —

© 2014 UPnP Forum. All Rights Reserved.

C.6.1 Presence (Analog to NOTIFY with ssdp:alive) . 153

C.6.2 XMPP disco#items (analog to M-SEARCH for users UCCDs and
UCC-CPs). 157

C.6.3 Presence update (analog to NOTIFY with ssdp:update). 158

C.6.4 Presence "unavailable" (Analog to NOTIFY with ssdp:byebye) 158

C.6.5 Service Level Discovery . 159

C.6.6 IQ:Query for DDD and SCPD Exchange (analog of HTTP GET for

DDD and SCPD). 159

C.7 PubSub (Analog of Event ing) . 168

C.7.1 Creat ing the UCCD PubSub st ruc ture . 172

C.7.2 Creat ing a UCCD PubSub collect ion. 174

C.7.3 Publishing a UCCD PubSub event . 179

C.7.4 Subscribing to a UCCD PubSub collection . 181

C.7.5 Unsubscribing to a UCCD PubSub collect ion . 183

C.7.6 Permissions model. 185

C.8 SOAP over XMPP (Analog of Control) . 185

C.9 Support for Binary (Media) Transport. 190

C.10 UCA errorCodes. 190

C.11 UCA Schemas . 190

C.12 Closing a UCA Sess ion . 190

C.13 UCA over BOSH and WebSocket . 191

Figure 1: — Protocol s tack . 10

Figure 1-1: — Discovery architec ture . 19

Figure 1-2: — Advert isement protocol s tack . 23

Figure 1-3: — Initial and repeat announcements, no announcement spreading 26

Figure 1-4: — Init ial and repeat announcements , message spreading of repeat
announcements . 27

Figure 1-5: — Search protocol stack . 35

Figure 2-1: — Description architecture . 42

Figure 2-2: — Description ret rieval protocol stack . 68

Figure 3-1: — Control architecture. 71

Figure 3-2: — Control protocol stack . 73

Figure 4-1: — Unicast event ing architecture. 88

Figure 4-2: — Unicast event ing protocol s tack . 89

Figure 4-3: — Mult icast event ing architec ture . 97

Figure 4-4: — Mulitcast event ing protocol stack . 98

Figure 5-1: — Presentation architecture . 107

Figure 5-2: — Presentation protocol s tack . 107

Figure C-1: — Protocol stacks UDA versus UCA . 135

Figure C-2: — Protocol stack UCA UCCD/UCC-CP and UCA Servers (UCS or UCOD) 136

Figure C-3: — General UCA Configurat ion . 138

Figure C-4: — Spec ific UCA communicat ions . 139

Figure C-5: — XMPP Authentication Negotiat ion . 146

 — 8 —

© 2014 UPnP Forum. All Rights Reserved.

Figure C-6: — Stanza rout ing for applicat ions with UCA and other XMPP funct ionality. 152

Figure C-7: — UDA to UCA Mapping of embedded devices. 153

Figure C-8: — Self <presence> stanza flows . 157

Figure C-9: — Combined Connect, Announce and Describe Message Flow . 166

Figure C-10: — PubSub Hierarchy Event Struc ture Creation . 171

Figure C-11: — BOSH and WebSocket UCA Stack . 191

Figure C-12: — BOSH and WebSocket at UCA component stacks . 192

Table 1 — Acronyms . 13

Table 1-1 — Root device discovery messages. 24

Table 1-2 — Embedded device discovery messages . 24

Table 1-3 — Service discovery messages . 25

Table 2-1: — Vendor ex tensions . 65

Table 3-1: — SOAP 1.1 UPnP Profile . 74

Table 3-2: — mustUnderstand att ribute. 75

Table 3-3: — UPnP Defined Action error codes . 85

Table 4-4: — HTTP Status Codes indicating a Subscript ion Error . 94

Table 4-5: — HTTP Status Codes indicating a Resubscript ion Error. 95

Table 4-6: — HTTP Status Codes indicating a Cancel Subscript ion Error . 97

Table 4-7: — HTTP Status Codes indicating a Not ify Error . 102

Table 4-8: — Mult icast event levels . 104

Table A-1: — Matching of Device Address to Mult icast Scope . 112

Table C-1: — Acronyms . 141

Table C-2: — Mapping of DDD iconList to [XEP-0084] . 163

Table C-3: — Summary of Requirements for DDD elements. 166

Table C-4: — PubSub Node Types . 168

Table C-5: — PubSub Node Access Models. 168

Table C-6: — PubSub Affi l iat ions and their Privi leges to "publishing" as defined by
[XEP-0060] and further restric ted by UCA (see footnotes) . 169

Table C-7: — PubSub Affil iat ions and their Privi leges to "subscribers" . 169

 — 9 —

© 2014 UPnP Forum. All Rights Reserved.

Introduction

What is UPnP1 Technology?

UPnP technology defines an architecture for pervas ive peer -to-peer network connect ivity of
intel ligent appliances, wireless devices, and PCs of al l form factors. It is designed to bring

easy-to-use, flexible, standards -based connectivity to ad-hoc or unmanaged networks whether
in the home, in a small business, public spaces, or at tached to the Internet. UPnP technology
provides a dist ributed, open network ing architec ture that leverages TCP/IP and Web

technologies to enable seamless prox imity networking in addit ion to control and data t ransfer
among networked devices.

The UPnP Device Architecture (UDA) is more than jus t a s imple extens ion of the plug and
play peripheral model. It is des igned to support zero -configuration, " invisible" networking, and
automatic discovery for a breadth of device categories from a wide range of vendors. This

means a device can dynamically join a network, obtain an IP address, convey its capabil it ies,
and learn about the presence and capabil ities of other devices. Finally, a device can leave a
network smoothly and automat ically without leaving any unwanted s tate behind.

The technologies leveraged in the UPnP architec ture inc lude Internet protocols such as IP,
TCP, UDP, HTTP, and XML. Like the Internet, contrac ts are based on wire protoc ols that are

dec larative, expressed in XML, and communicated via HTTP. Us ing Internet protocols is a
st rong choice for UDA because of its proven abil ity to span different phys ical media, to enable
real world multiple-vendor interoperation, and to achieve s ynergy with the Internet and many

home and office int ranets. The UPnP architecture has been explic itly designed to
accommodate these environments. Further, via bridging, UDA accommodates media running
non-IP protocols when cost, technology, or legacy prevents the media or devices attached to

it from running IP.

What is "universal" about UPnP technology? No device drivers ; common protocols are used

instead. UPnP networking is media independent. UPnP devices can be implemented using
any programming language, and on any operating system. The UPnP architecture does not
spec ify or constrain the des ign of an API for applications; OS vendors may create APIs that

suit their customers’ needs.

UPnP Forum

UPnP Forum is an industry init iative designed to enable easy and robust connectivity among
stand-alone devices and PCs from many different vendors . UPnP Forum seeks to develop

standards for describing device protocols and XML-based device schemas for the purpose of
enabling device-to-device interoperabil i ty in a scalab le, networked environment.

UPnP Forum is comprised of member companies across many industries that promote the
adopt ion of uniform technical device interconnectivity standards and test ing and cert i fying of
these devices. The Forum develops and administers the test ing and cert i fication process,

administers the UPnP logo program, and provides informat ion to members and other
interested parties regarding the certi ficat ion of UPnP devices. The UPnP device certi fication
process is open to any vendor who is an implementer level member of UPnP Forum, has paid

the implementer dues, and has devices that support UPnP functionality . For more informat ion,
see ht tp: / /www.upnp.org.

UPnP Forum has set up work ing committees in spec ific ar eas of domain expertise. These
work ing commit tees are charged with creat ing proposed device standards, building sample
implementations, and building appropriate tes t suites. This document indicates specific

technical dec isions that are the purview of UPnP Forum work ing commit tees.

UPnP vendors can build compliant devices with confidence of interoperability and benefits of

shared intellec tual property and the logo program. Separate from the logo program, vendors

1 The UPnP® Word Mark and UPnP® Logo are certification marks owned by UPnP Forum.

http://www.upnp.org/

 — 10 —

© 2014 UPnP Forum. All Rights Reserved.

may also build devices that adhere to the UPnP Device Architecture defined herein without a

formal standards procedure. If vendors build non -standard devices, they determine technical
dec is ions that would otherwise be determined by a UPnP Forum work ing commit tee.

In this document

The UPnP Device Architec ture (formerly known as the DCP Framework) contained herein

defines the protocols for communicat ion between controllers , or control points , and devices.
For discovery , description, control, eventing, and presentation, the UPnP Device Architecture
uses the following protocol stack (the indicated colors and type styles are used throughout

this document to indicate where each protocol element is defined):

Figure 1: — Protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP De vice Architecture [green-bold]

SSDP [blue] Multicast events [navy-bold]
SOAP [blue] GENA [navy-bold]

HTTP [black] HTTP [black]

UDP [black] TCP [black]

I P [black]

At the highest layer, messages logically contain only UPnP vendor -specific information about

their devices. Moving down the stack, vendor content is supplemented by informat ion defined
by UPnP Forum working committees. Messages from the layers above are hosted in UPnP -
spec ific protocols such as the Simple Service Discovery Protocol (SSDP), the General Event

Not ification Architecture (GENA) and the mult icast event protocol defined in this document,
and others that are referenced. SSDP is delivered via either multicast or unicast UDP.
Mult icast events are delivered via multicast UDP. GENA is delivered via HTTP. Ult imately, all

messages above are delivered over IP. The remaining c lauses of this document describe the
content and format for each of these protocol layers in detail. For reference, colors in [square
brackets] above indicate which protocol defines specific message components throughout this

document.

Two general c lass ifications of devices are defined by the UPnP architecture: controlled

devices (or s imply “devices”), and control points . A control led device funct ions in the rol e of a
server, responding to requests from control points. Both control points and controlled devices
can be implemented on a variety of plat forms including personal computers and embedded

systems. Mult iple devices, control points, or both may be operation al on the same network
endpoint s imultaneous ly.

Note: This document is oriented toward an IPv4 environment. Cons iderations for an IPv6
environment are expressed in Annex A.

The foundat ion for UPnP networking is IP address ing. In an IPv4 environment, each device or
control point shall have a Dynamic Host Configurat ion Protocol (DHCP) cl ient and search for a
DHCP server when the device or control point is first connected to the network . If a DHCP

server is available, i .e., the network is managed; the device or control point shall use the IP
address assigned to it. If no DHCP server is available, i .e., the network is unmanaged; the
device or control point shall use Auto IP to get an address. In brief, Auto IP defines how a

device or control point intel ligent ly chooses an IP address from a set of reserved addresses
and is able to move easily between managed and unmanaged networks. If during the DHCP
transaction, the device or control point obtains a domain name, e.g., through a DNS ser ver or

via DNS forwarding, the device or control point should use that name in subsequent network
operat ions; otherwise, the device or control point should use its IP address.

 — 11 —

© 2014 UPnP Forum. All Rights Reserved.

Certain UPnP networks have more complex configurations such as multiple physical networks

and/or mult iple logical networks to accommodate multiple non -overlapping addressing
schemes. Devices and control points may also have two or more network interfaces, and/or
two or more IP addresses assigned to each interface . In such configurat ions, a s ingle device

or control point may be assigned multiple IP addresses from different logical networks in the
same UPnP network, resulting in devices appearing to a control point mult iple times in the
network . Devices and control points that have multiple IP addresses on the same UPnP

network are referred to as multi -homed. Throughout this document, the term "UPnP -enabled
interface" is used to refer to an interface which is ass igned an IP address belonging to the
UPnP network. Additional behaviors speci fic to multi -homed devices and control points wil l be

covered in applicable c lauses throughout the document . However, as a general principle,
related interactions between control points and devices (e.g. ac tion control request and
response messages, event subscription and event messages) shall occur using the same pair

of outgoing and incoming UPnP -enabled interfaces.

Given an IP address, Step 1 in UPnP network ing is discovery. When a device is added to the

network , the UPnP discovery protocol al lows that d evice to advert ise its services to control
points on the network. Similarly , when a control point is added to the network, the UPnP
discovery protocol allows that control point to search for devices of interest on the network.

The fundamental exchange in both cases is a discovery message containing a few essent ial
spec ifics about the device or one of its services, e.g., its type, identifier, and a pointer to more
detailed informat ion. The clause on Discovery below explains how devices advert ise, how

control points search, and contains details about the format of discovery messages.

Step 2 in UPnP network ing is description. After a control point has discovered a device, the

control point sti ll knows very li ttle about the device. For the control point to learn more about
the device and its capabilit ies, or to interact with the device, the control point shall ret rieve the
device's descript ion from the URL provided by the device in the discovery message. Devices

may contain other logical devices, as well as funct ional units , or services. The UPnP
description for a device is expressed in XML and inc ludes vendor -spec ific manufacturer
informat ion like the model name and number, the serial number, the manufacturer name,

URLs to vendor-specific Web s ites, etc. The desc ript ion also includes a lis t of any embedded
devices or services, as well as URLs for control, event ing, and presentation. For each service,
the descript ion includes a l ist of the commands, or actions, to which the service responds,

and parameters, or arguments for each action; the descript ion for a service also includes a l ist
of variables; these variables model the state of the service at run time, and are described in
terms of their data type, range, and event characterist ics. The c lause on Descript ion below

explains how devices are described and how control points ret rieve those descriptions.

Step 3 in UPnP networking is control . After a control point has ret rieved a description of the

device, the control point can send act ions to a device's services. To do this , a control point
sends a suitable control message to the control URL for the service (provided in the device
description). Control messages are also expressed in XML us ing the Simple Object Access

Protocol (SOAP). Like funct ion calls, in response to the control message, the service returns
any act ion-spec ific values. The effec ts of the act ion, i f any, are modeled by changes in the
variables that describe the run-time s tate of the service. The clause on Control below explains

the descript ion of ac t ions, s tate variables , and the format of control messages.

Step 4 in UPnP network ing is event ing. A UPnP descript ion for a service inc ludes a lis t of

act ions the service responds to and a l ist of variables that model the state of the service at
run time. The service publishes updates when these variables change, and a control point
may subscribe to receive this informat ion. The service publishes updates by sending event

messages. Event messages contain the names of one or more state variables and the current
value of those variables. These messages are also expressed in XML. A spec ial initial event
message is sent when a control point first subscribes; this event message contains the names

and values for al l evented variables and allows the subscriber to init ialize its model of the
state of the service. To support scenarios with mult iple control points, event ing is designed to
keep all control points equally informed about the effects of any action. Therefore, all

subscribers are sent al l event messages, subsc ribers receive event messages for al l evented

 — 12 —

© 2014 UPnP Forum. All Rights Reserved.

variables that have changed, and event messages are sent no matter why the s tate variable

changed (either in response to a requested act ion or because the s tate the service is
modeling changed). Multicast event ing is a variant of Step 4 in UPnP networking. Through
mult icast event ing, control points can listen to state changes in services without subscript ion.

This form of event ing is useful first when events which are not relevant to specific UPnP
interact ions should be delivered to control points to inform users , and second when mult iple
controlled devices want to inform multiple other control points. Multicast event ing is inherent ly

unreliable s ince it is based on UDP. To increase the probabili ty of successful t ransmiss ion,
the option to ret ransmit mult icast event not ifications is outl ined. UPnP Working committees
should define whether spec ific events are mult icast events. The clause on Event ing below

explains unicast event subscription and the format of both un icast and multicast event
messages.

Step 5 in UPnP network ing is presentation. If a device has a URL for presentat ion, then the
control point can ret rieve a page from this URL, load the page into a browser, and depending
on the capabili ties of the page, allow a user to control the device and/or view device status.

The degree to which each of these can be accomplished depends on the spec ific capabilit ies
of the presentation page and device. The clause on Presentat ion below explains the protocol
for ret rieving a presentat ion page.

Audience

The audience for this document inc ludes UPnP device and control point vendors, members of
UPnP Forum work ing committees, and anyone else who has a need to understanding the
technical details of UPnP protocols .

This document assumes the reader is famil iar with the HTTP, TCP, UDP, IP family of
protocols; this document makes no attempt to explain them. This document also assumes

most readers wil l be new to XML, and while it is not an XML tutorial, XML -related issues are
addressed in detail given the central ity of XML to the UPnP Device Architecture. This
document makes no assumptions about the reader's understanding of various programming or

script ing languages.

Conformance te rminology

In this document, features are described as required, recommended, allowed or
DEPRECATED as fol lows:

Required (or shall or mandatory).

These basic features shall be implemented to comply with UPnP Device Architecture. The
phrases “shall not ”, and “PROHIBITED” indicate behavior that is prohibited, i. e. that i f
performed means the implementat ion is not in compliance.

Recommended (or should).

These features add funct ionality supported by UPnP Device Architecture and should be
implemented. Recommended features take advantage of the capabil ities UPnP Devi ce

Architec ture, usually without imposing major cost increases. Not ice that for compliance
tes ting, i f a recommended feature is implemented, it shall meet the spec ified requirements
to be in compliance with these guidelines. Some recommended features could become

requirements in the future. The phrase “should not ” indicates behavior that is permitted but
not recommended.

AllowedAllowed).

These features are neither required nor recommended by UPnP Device Architecture, but i f
the feature is implemented, i t shall meet the spec ified requirements to be in compliance
with these guidelines. These features are not l ikely to become requirements in the future.

DEPRECATED.

 — 13 —

© 2014 UPnP Forum. All Rights Reserved.

Although these features are sti ll described in this spec ificat ion, they should not be

implemented except for backward compatibil ity. The occurrence of a deprecated feature
during operation of an implementation compliant with the current spec ification has no
effec t on the implementat ion’s operation and does not produce any error conditions.

Backward compatibil ity may require that a feature is implemented and functions as
spec ified but i t shall never be used by implementations compliant with this spec ification.

Acronyms

Table 1 — Acronyms

Acr onym M e aning Acr onym M e aning

A RP A ddress Resolution Protocol SOA P Simple Objec t Access Protocol

CP Control Point SSDP Simple Service Discovery Protocol

DCP Dev ice Control Protocol UDA UPnP Dev ice Architecture

DDD Dev ice Description Document UPC Universal Product Code

DHCP Dynamic Host Configuration Protocol URI Unif orm Resource Identif ier

DNS Domain Name Sys tem URL Unif orm Resource Locator

GENA General Event Notif ication Architecture URN Unif orm Resource Name

HTML Hyper text Markup Language UUID Universally Unique Identif ier

HTTP Hyper text Tr rdansfer Protocol XML Ex tens ible Markup Language

SCPD Serv ice Control Protocol Description

Glossary

action
Command exposed by a service. Takes one or more input or output arguments. May have a
return value. For more informat ion, see c lause 2, “Description” and c lause 3, “Control”.

argument
Parameter for act ion exposed by a service. May be in or out . For more informat ion, see c lause

2, “Descript ion” and c lause 3, “Control”.

control point

Retrieves device and service descriptions, sends act ions to services, polls for service state
variables , and receives events from services.

device
Logical device. A container. May embed other logical devices. Embeds one or more services.
Advert ises its presence on network(s). For more information, see c lause 1, “Discovery ” and

c lause 2, “Descript ion”.

device description

Formal definition of a logical device, expressed in the UPnP Template Language. Written in
XML syntax. Spec ified by a UPnP vendor by fil ling in the placeholders in a UPnP Device
Template, including, e.g., manufacturer name, model name, model number, serial number,

and URLs for control, event ing, and presentation. For more information, see c lause 2,
“Descript ion”.

device type
Standard device types are denoted by urn:schemas-upnp-org:device: followed by a unique
name ass igned by a UPnP Forum work ing commit tee. One -to-one relationship with UPnP

Device Templates. UPnP vendors may specify additional device types; these are denoted by
urn:domain-name:device: fol lowed by a unique name ass igned by the vendor, where domain-
name is a Vendor Domain Name. For more informat ion, see c lause 2, “Description” .

 — 14 —

© 2014 UPnP Forum. All Rights Reserved.

event

Not ification of one or more changes in state variables exposed by a service. For more
informat ion, see c lause 4, “Event ing”.

GENA
General Event Not ification Architec ture. The event subscript ion and not ificat ion protocol
defined in c lause 4, “Event ing”.

publisher
Source of event messages. Typically a device's service. For more information, see c lause 4,

“Event ing”.

root device

A logical device that is not embedded in any other logical device. For more information, see
c lause 2, “Descript ion”.

service
Logical funct ional unit . Smallest units of control. Exposes act ions and models the state of a
phys ical device with s tate variables . For more informat ion, see c lause 3, “Control”.

service description
Formal definition of a logical service, expressed in the UPnP Template language. Written in

XML syntax. Spec ified by a UPnP vendor by fil ling in any placeholders in a UPnP Service
Template. (Was SCPD.) For more informat ion, see c lause 2, “Description”.

service type
Standard service types are denoted by urn:schemas -upnp-org:service: fol lowed by a unique
name ass igned by a UPnP forum working committee, colon, and an integer vers ion number.

One-to-one relationship with UPnP Service Templates. UPnP vendors may spec ify addit ional
services; these are denoted by urn: domain-name:service: followed by a unique name
ass igned by the vendor, colon, and a vers ion number, where domain-name is a Vendor

Domain Name. For more informat ion, see c lause 2, “Descript ion”.

SOAP

Simple Object Access Protocol. A remote-procedure call mechanism based on XML that
sends commands and receives values over HTTP. For more informat ion, see clause 3,
“Control”.

SSDP
Simple Service Discovery Protocol. A mult icast discovery and search mechanism that uses a

mult icast variant of HTTP over UDP. Defined in c lause 1, “Discovery ”.

sta te variable

Single facet of a model of a phys ical service. Exposed by a service. Has a name, data type,
opt ional default value, opt ional constraints values, and may t rigger events when its value
changes. For more informat ion, see c lause 2, “Descript ion” and c lause 3, “Control”.

subscriber
Recipient of event messages. Typically a control point . For more information, see c lause 4,

“Event ing”.

UPnP Device Template

Template l ist ing device type, required embedded devices (if any), and required services.
Written in XML syntax and derived from the UPnP Device Schema. Defined by a UPnP Forum
work ing commit tee. One-to-one relat ionship with standard device types. For more informat ion,

see c lause 2, “Descript ion”.

UPnP Service Template

Template lis ting action names, parameters for those act ions, s tate variables, and properties of
those state variables. Written in XML syntax and derived from the UPnP Service Schema.

 — 15 —

© 2014 UPnP Forum. All Rights Reserved.

Defined by a UPnP Forum working committee. One-to-one relat ionship with standard service

types. For more informat ion, see c lause 2, “Description”.

UPnP Device Schema

Defines the elements and att ributes used in UPnP Device and Service Templates. Written in
XML syntax and derived from XML Schema (Part 1: Structures, Part 2: Datatypes). Defined by
the UPnP Device Archi tecture herein. For more informat ion, see c lause 2, “Description”.

Vendor Domain Name
A domain name that is supplied by a vendor. It is owned by the vendor, and shall be

registered with an ICANN accredited Regist rar, such that it is unique. The vendor shall keep
the domain name regis t ration up to date. A Vendor Domain Name length should be chosen to
be compat ible with the use of the domain name in the UDA.

References and resources

RFC 2710, Mult icast Lis tener Discovery for IPv6. Available at :
ht tp: / /www. iet f.org/rfc /rfc2710.tx t.

RFC 2616, HTTP: Hypertex t Transfer Protocol 1.1. Available at :
ht tp: / /www. iet f.org/rfc /rfc2616.tx t.

RFC 2279, UTF-8, a t ransformat ion format of ISO 10646 (character encoding). Available at :
ht tp: / /www. iet f.org/rfc /rfc2279.tx t.

XML, Extensible Mark up Language. W3C recommendat ion. Available at :
ht tp: / /www.w3.org/XML/ .

DEVICEPROTECTION, UPnP Device Protect ion spec ification. Available at
ht tp: / /upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf.

Each c lause in this document contains additional informat ion about resources for specific
topics .

0 Addressing

Addressing is Step 0 of UPnP network ing. Through addressing, devices and control points get
a network address. Addressing enables discovery (Step 1) where control points find

interest ing device(s), descript ion (Step 2) where control points learn about device capab il it ies,
control (Step 3) where a control point sends commands to de vice(s), eventing (Step 4) where
control points lis ten to s tate changes in device(s), and presentat ion (Step 5) where control

points display a user interface for device(s).

The foundat ion for UPnP network ing is IP address ing. A UPnP device or control point is

al lowed to support IP vers ion 4-only , or both IP vers ion 4 and IP vers ion 6. This c lause, and
the examples given throughout clauses 1 through 5 of this document, assumes an IPv4
implementation. Annex A of this document describes IPv6 operat ion. Each UP nP device or

control point which does not i tself implement a DHCP server shall have a Dynamic Host
Configuration Protocol (DHCP) cl ient and search for a DHCP server when the device or
control point is first connected to the network (i f the device or contro l point itself implements a

DHCP server, it allowed to allocate itself an address from the pool that it controls). If a DHCP
server is available, i .e., the network is managed; the device or control point shall use the IP
address assigned to it. If no DHCP server is available, i .e., the network is unmanaged; the

device or control point shall use automat ic IP address ing (Auto-IP) to obtain an address.

Auto-IP (defined in RFC 3927) defines how a device or control point: (a) determines if DHCP

is unavailable, and (b) intell igent ly chooses an IP address from a set of l ink -local IP
addresses. This method of address assignment enables a device or control point to easily
move between managed and unmanaged networks.

http://www.ietf.org/rfc/rfc2710.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2279.txt
http://www.w3.org/XML/
http://upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf

 — 16 —

© 2014 UPnP Forum. All Rights Reserved.

This c lause provides an overview of the basic operat ion of Auto-IP. The operations described

in this c lause are detailed and clarified in the reference documents listed below. Where
conflicts between this document and the reference documents exis t, the reference document
always takes precedence.

0.1 De te rmining w hether to use Auto-IP

A device or control point that supports Auto -IP and is configured for dynamic address
ass ignment begins by request ing an IP address via DHCP by sending out a DHCPDISCOVER
message. The amount of time this DHCP Client l istens for DHC POFFERs is implementation

dependent. If a DHCPOFFER is received during this time, the device or control point shall
cont inue the process of dynamic address ass ignment. If no valid DHCPOFFERs are received,
the device or control point shall then auto-configure an IP address us ing Auto-IP.

0.2 Choosing an address

To auto-configure an IP address using Auto-IP, the device or control point uses an
implementation dependent algorithm for choosing an address in the 169.254/16 range. The
firs t and las t 256 addresses in t his range are reserved and shall NOT be used.

The selected address shall then be tested to determine if the address is already in use. If the
address is in use by another device or control point, another address shall be chosen and

tes ted, up to an implementation dependent number of ret ries. The address select ion shall be
randomized to avoid coll is ion when multiple devices or control points are attempting to
al locate addresses. The device or control point chooses an address us ing a pseudo -random

algorithm (dist ributed over the ent ire address range from 169.254.1.0 to 169.254.254.255) to
minimize the likelihood that devices or control points that join the network at the same time
wil l choose the same address and subsequently choose alternat ive addresses in th e same

sequence when collis ions are detected. This pseudo -random algorithm should be seeded
us ing the device’s or control point ’s Ethernet hardware MAC address.

0.3 Testing the address

To tes t the chosen address, the device or control point shall use an Address Resolution

Protocol (ARP) probe. An ARP probe is an ARP request with the device or control point
hardware address used as the sender's hardware address and the sender's IP address set to
0s. The device or control point shall then l isten for responses to the ARP probe, or other ARP

probes for the same IP address. If either of these ARP packets is seen, the device or control
point shall consider the address in use and t ry a different address. The ARP probe is allowed
to be repeated for greater certainty that the address is not already in use; it is recommended

that the probe be sent four t imes at two-second intervals .

After successfully configuring a l ink -local address, the device or control point shall send two

gratuitous ARPs, spaced two seconds apart, this time fil ling in the sender IP address. The
purpose of these gratuitous ARPs is to make sure that other hosts on the net do not have
stale ARP cache entries left over from some other host that may previous ly have been using

the same address.

Devices and control points that are equipped with persis tent s torage are allowed to record the

IP address they have selected and on the next boot use that address as their first candidate
when probing, in order to increase the stabil ity of addresses and reduce the need to resolve
address confl ic ts.

Address coll ision detect ion is not l imited to the address tes ting phase, when the device or
control point is sending ARP probes and l istening for replies. Address collision detect ion is an

ongoing process that is in effect for as long as the device or control point is using a l ink -local
address. At any t ime, i f a device or control point receives an ARP packet with its own IP
address given as the sender IP address, but a sender hardware address that does not match

its own hardware address, then the device or control point shall t reat this as an address
coll is ion and shall respond as described in either a) or b) below:

 — 17 —

© 2014 UPnP Forum. All Rights Reserved.

a) Immediately configure a new l ink -local IP address as described above; or,

b) If the device or control point current ly has active TCP connect ions or other reasons to

prefer to keep the same IP address, and has not seen any other conflic ting ARP packets
recent ly (e.g., within the last ten seconds) then it is allowed to elect to attempt to defend
its address once, by recording the time that the conflicting ARP packet was received, and

then broadcast ing one s ingle gratuitous ARP, giving its own IP and hardware addresses
as the source addresses of the ARP. However, i f another confl icting ARP packet is
received within a short time after that (e.g., within ten seconds) then the device or control
point shall immediately configure a new Auto-IP address as described above.

The device or control point shall respond to conflicting ARP packets as described in eithe r a)
or b) above; it shall NOT ignore confl ict ing ARP packets. If a new address is selec ted, the
device or control point shall cancel previous advert isements and re -advert ise with the new

address.

After successfully configuring an Auto-IP address, all subsequent ARP packets (replies as

well as requests) containing an Auto-IP source address shall be sent using l ink -level
b roadcast instead of link-level unicast, in order to facilitate timely detect ion of duplicate
addresses.

0.4 Forw arding rules

IP packets whose source or dest inati on addresses are in the 169.254/16 range shall NOT be
sent to any router for forwarding. Instead, the senders shall ARP for the dest inat ion address
and then send the packets directly to the dest ination on the same l ink. IP datagrams with a

mult icast destination address and an Auto-IP source address shall NOT be forwarded off the
local link. Devices and control points are allowed to assume that al l 169.254/16 destination
addresses are on-link and direc tly reachable. The 169.254/16 address range shall not be

subnet ted.

0.5 Periodic checking for dynamic address ava i labi lity

A device or control point that has auto-configured an IP address shall periodically check for
the exis tence of a DHCP server. This is accomplished by sending DHCPDISCOVER

messages. How often this check is made is implementat ion dependent, but check ing every 5
minutes would maintain a balance between network bandwidth required and connect ivity
maintenance. If a DHCPOFFER is received, the device or control point shall proceed with

dynamic address allocat ion. Once a DHCP ass igned address is in place, the device or control
point is al lowed to release the auto-configured address, but is also allowed to choose to
maintain this address for a period of t ime (or indefinitely) to maintain connectivity.

To switch over from one IP address to a new one, the device should, i f poss ible, cancel any
outs tanding advert isements made on the previous address and shall issue new

advert isements on the new address. The clause on Discovery explains advert isements and
their cancellations. In addit ion, any event subscriptions are deleted by the device (see c lause
on Event ing).

For a multi -homed device with mult iple IP addresses, to switch one of the IP addresses to a
new one, the device should cancel any outstanding advertisements made on the previous IP

address, and shall issue new advert isements on the new IP addresses. Furthermore, i t shall
also issue appropriate update advert isements on all unaffected IP addresses. The c lause on
Discovery explains advert isements, their cancellat ions and updates. The c lause on Event ing

explains the effec t on event subscriptions.

0.6 Device naming and DNS inte raction

Once a device has a valid IP address for the network, it can be located and referenced on that
network through that address. There may be s ituations where the end user needs to locate

and identify a device. In these situations, a friendly name for the device is much eas ier for a
human to use than an IP address. If a device chooses to provide a host name to a DHCP

 — 18 —

© 2014 UPnP Forum. All Rights Reserved.

server and register with a DNS server, the device should either ensure the requested host

name is unique or provide a means for the user to change the requested host name. Most
often, devices do not provide a host name, but provide URLs us ing li teral (numeric) IP
addresses.

Moreover, names are much more static than IP addresses. Clients referring a device by name
don't require any modificat ion when the IP address of a device changes. Mapping of the

device's DNS name to its IP address could be entered into the DNS database manua lly or
dynamically according to RFC 2136. While devices support ing dynamic DNS updates can
register their DNS records directly in the DNS, it is also poss ible to configure a DHCP server

to regis ter DNS records on behalf of these DHCP c lients .

0.7 Name to IP address resolution

A device that needs to contact another device identified by a DNS name needs to discover i ts
IP address. The device submits a DNS query according to RFC1034 and 1035 to the pre -

configured DNS server(s) and receives a response from a DNS se rver containing the IP
address of the target device. A device can be statically pre -configured with the list of DNS
servers . Alternatively a device could be configured with the l ist of DNS server through DHCP,

or after the address ass ignment through a DHCP INFORM message.

0.8 Re fe rences

RFC1034, Domain Names - Concepts and Fac il i t ies. Available at :
ht tp: / /www. iet f.org/rfc /rfc1034.tx t.

RFC1035, Domain Names - Implementat ion and Spec ification. Available at :
ht tp: / /www. iet f.org/rfc /rfc1035.tx t.

RFC 2131, Dynamic Host Configurat ion Protocol. Available at :
ht tp: / /www. iet f.org/rfc /rfc2131.tx t.

RFC 2136, Dynamic Updates in the Domain Name System. Available at :
ht tp: / /www. iet f.org/rfc /rfc2136.tx t.

RFC 3927, Dynamic Configurat ion of IPv4 Link -Local Addresses. Available at :
ht tp: / /www. iet f.org/rfc /rfc3927.tx t.

1 Discovery

Discovery is Step 1 in UPnP™ network ing. Discovery comes after address ing (Step 0) where

devices get a network address. Through discovery, control points find interest ing device(s).
Discovery enab les description (Step 2) where control points learn about device capab il it ies,
control (Step 3) where a control point sends commands to device(s), eventing (Step 4) where

control points lis ten to s tate changes in device(s), and presentat ion (Step 5) where control
points display a user interface for device(s).

Discovery is the firs t step in UPnP network ing. When a device is added to the network, the
UPnP discovery protocol al lows that device to advert ise its services to control points on the
network . Similarly, when a c ontrol point is added to the network, the UPnP discovery protocol

al lows that control point to search for devices of interest on the network. The fundamental
exchange in both cases is a discovery message containing a few, essent ial spec ifics about
the device or one of its services, e.g. , its type, universally unique ident ifier, a pointer to more

detailed informat ion and opt ionally parameters that ident ify the current s tate of the device.

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc3927.txt

 — 19 —

© 2014 UPnP Forum. All Rights Reserved.

Figure 1-1: — Discovery a rchitecture

resquest

control point 3

response

control point 1

control point 2

response

response

advertise

advertise

advertise

root device 2

service

device

service

search

search

search

multicast

multicast

root device 1

service

service

device

service

multicast

unicast

When a device knows it is newly added to the network , i t shall multicast a number of
discovery messages advertising itself, its embedded devices, and its services (init ial

announce). Any interested control point c an l isten to the standard mult icast address for
not ifications that new capabili ties are available. A mult i -homed device shall mult icast the
discovery messages on all UPnP -enabled interfaces. A mult i -homed control point is al lowed to

l is ten to the s tandard mult icast address on one, some or al l of i ts UPnP -enabled interfaces.

When a new control point is added to the network , it is al lowed to mult icast a discovery

message searching for interesting devices, services, or both. All devices shall l isten to the
standard mult icast address for these messages and shall respond if any of their root devices,
embedded devices or services matches the search criteria in the discovery message. In

addition, a control point is al lowed to unicast a discovery message to a spec ific IP address on
port 1900 or on the port specified by the opt ional SEARCHPORT.UPNP.ORG header field
(which supersedes port 1900 for this use), searching for a UPnP device or service at that

spec ific IP address. This ac tion presumes the control point alrea dy knows the device at this IP
address is a UPnP device (which l istens on the appropriate port). The control point can use
unicast search for a number of applications. A unicast search can quick ly confirm a specific

device and provide the corresponding discovery information (e.g. UUID, URL) of this device.

 — 20 —

© 2014 UPnP Forum. All Rights Reserved.

All devices shall lis ten to incoming unicast search messages on port 1900 or, i f provided, the

port number spec ified in the SEARCHPORT.UPNP.ORG header field and shall respond if any
of their root devices , embedded devices or services matches the search criteria in the
discovery message.

A mult i -homed control point is al lowed to mult icast discovery messages on one, some or all of
i ts UPnP-enabled interfaces. Mult i -homed devices shall listen to the standard multicast

address on all UPnP-enabled interfaces for multicast discovery messages. Mult i -homed
devices shall also l isten to incoming unicast search messages on port 1900 or, i f provided,
the port number specified in the SEARCHPORT.UPNP.ORG header field. The devices shall

respond if any of their root devices, embedded devices or services matches the search
criteria in the discovery message.

To reiterate, a control point is allowed to learn of a device of interest because that device sent
discovery messages advert is ing itself or because the device responded to a discovery
message searching for devices. In either case, i f a control point is interested in a device and

wants to learn more about it, the control point uses the informat ion in the discovery message
to send a descript ion query message. The clause on Description explains description
messages in detail .

When a device is removed from the network , it should, i f possible, multicast a number of
discovery messages revok ing its earlier announcements , effectively declaring that its root

devices, embedded devices and services will no longer be available. When the IP address of
a device is changed, i t should revoke any earl ier announcements and it shall advert ise using
the new IP address.

When a mult i -homed device becomes unavailable to the network on any of i ts UPnP -enabled
interfaces, it should, i f possible, multicast a number of discovery messages revok ing its earlier

announcements on the affec ted UPnP -enabled interfaces, effectively declaring that its root
devices, embedded devices and services will no longer be available on those interfaces. If it
remains available to the network on any of i ts other UPnP -enabled interfaces, it shall NOT

mult icast such discovery messages on the unaffec ted UPnP -enabled interfaces.

When a multi -homed device becomes available to the network on a new UPnP -enabled

interface (in addit ion to any ex ist ing UPnP -enabled interfaces), i t shall increase its
BOOTID.UPNP.ORG field value (see c lause 1.2 “Advert isement ”), and multicast a number of
update messages on the ex ist ing UPnP -enabled interfaces to announce the new

BOOTID.UPNP.ORG field value. After all the update messages have been sent, it shall
mult icast a number of discovery messages on all (exis ting and new) UPnP -enabled interfaces
with the new BOOTID.UPNP.ORG field value.

Similarly, when one of the IP addresses of a multi -homed device is changed, it should revoke
any earl ier announcements on the previous IP address. It shall increase its

BOOTID.UPNP.ORG field value (see c lause 1.2 “Advert isement ”), and multicast a number of
update messages on the ex ist ing UPnP -enabled interfaces to announce the new
BOOTID.UPNP.ORG field value. After all the update messages have been sent, it shall

mult icast a number of discovery messages on all (exis ting and new) UPnP -enabled interfaces
with the new BOOTID.UPNP.ORG field value.

Finally , i f a mult i -homed device loses connect ivity on one of i ts UPnP -enabled interfaces and
then regains connect ivity, it shall increase its BOOTID.UPNP.ORG field value (see 1.2,
“Advert isement ”), and multicast a number of update messages on the unaffected UPnP -

enabled interfaces to announce the new BOOTID.UPNP.ORG field value. After al l the update
messages have been sent, i t shall multicast a number of discovery messages on all (affected
and unaffec ted) UPnP-enabled interfaces with the new BOOTID.UPNP.ORG field value .

To l imit network congest ion, the t ime-to-l ive (TTL) of each IP packet for each multicast
message should default to 2 and should be configurable. When the TTL is greater than 1, it is

poss ible for multicast messages to t raverse mult iple routers; therefore control points and
devices us ing non-AutoIP addresses shall send an IGMP Join message so that routers will

 — 21 —

© 2014 UPnP Forum. All Rights Reserved.

forward multicast messages to them (this is not necessary when us ing an Auto -IP address,

s ince packets with Auto-IP addresses wil l not be forwarded by routers).

Versioning: Discovery plays an important role in the interoperabil ity of devices and control

points using different vers ions of UPnP networking. The UPnP Device Architec ture (defi ned
herein) is vers ioned with both a major and a minor version, usually written as major.minor,
where both major and minor are integers (for example, vers ion 2.10 [two dot ten] is newer

than vers ion 2.2 [two dot two]). Advances in minor vers ions shall be a compatible superset of
earl ier minor versions of the same major vers ion. Advances in major vers ion are not required
to be supersets of earlier versions and are not guaranteed to be backward compatible.

However UDA vers ion 2.0 is specified as a superset of UDA 1.1 and is thus backwards
compatible with UDA 1.x vers ions. Therefore UDA 2.0 control points shall maintain
interoperabil ity with UDA 1.x devices. UDA 1.x control points can work with UDA 2.0 devices,

but can’t access the addit ional funct ionality spec i fied in UDA 2.0. Vers ion informat ion is
communicated in discovery and description messages. Discovery messages include the
vers ion of UPnP networking that the devices and control points support (in the SERVER and

USER-AGENT header fields); the version of device and service types supported is also
included in relevant discovery messages. Addit ionally, description documents also include the
same informat ion. SERVER and USER-AGENT header fields are also used in control and

event ing to communicate which vers ion of UPnP networking the devices and control points
support. This clause explains the format of vers ion information in discovery messages and
spec ific requirements on discovery messages to maintain compat ibi li ty with advances in minor

vers ions.

The remainder of this clause explains the UPnP discovery protocol known as SSDP (Simple

Service Discovery Protocol) in detail , enumerat ing how devices advert ise and revoke their
advert isements as well as how control points search and devices respond.

1.1 SSDP message format

SSDP uses part of the header field format of HTTP 1.1 as defined in RFC 2616. However, it is
NOT based on full HTTP 1.1 as it uses UDP ins tead of TCP, and it has its own processing
rules . This subc lause defines the generic format of a SSDP message.

All SSDP messages shall be formatted according to RFC 2616 clause 4.1 “generic message”.
SSDP messages shall have a s tart -l ine and a lis t of message header fields . SSDP messages

should not have a message body. If a SSDP message is received with a message body , the
message body is al lowed to be ignored.

1.1.1 SSDP Sta rt-l ine

Each SSDP message shall have exactly one start -line. See c lause 1.2, “Advert isement ” and
c lause 1.3, “Search” below for the definition of al l poss ible SSDP messages. The start -line
shall be formatted either as defined in RFC 2616 clause 5.1 or c lause 6.1. Furthermore, the

s tart -l ine shall be one of the fol lowing three:

NOTIFY * HTTP/1.1\r\n
M-SEARCH * HTTP/1.1\r\n

HTTP/1.1 200 OK\r\n

As a c larificat ion, while the start -l ine shall inc lude “HTTP/1.1”, this does not signal that SSDP
is fully based on HTTP 1.1; this start -line element is inc luded for backward compatibil ity

reasons only .

1.1.2 SSDP message header fields

The message header fields in a SSDP message shall be formatted according to RFC 2616

c lause 4.2. This specifies that each message header field consis t of a case-insensitive field
name fol lowed by a colon (":"), fol lowed by the case-sens itive field value. SSDP restricts
al lowed field values.

Example SSDP header:

 — 22 —

© 2014 UPnP Forum. All Rights Reserved.

HOST: 239.255.255.250:1900

1.1.3 SSDP header field extensions

UPnP working committees and UPnP vendors are al lowed to ext end SSDP messages with
additional SSDP header fields . Addit ional message header fields can also be defined by the
UPnP Forum Technical committee (e.g. c lause 1.2, “Advert isement ” defines

BOOTID.UPNP.ORG, CONFIGID.UPNP.ORG, NEXTBOOTID.UPNP.ORG, and
SEARCHPORT.UPNP.ORG header fields). To prevent name -c lashes of header field
definit ions (two parties accidentally define the same header field name with different

semant ics), vendor-defined header field names shall have the fol lowing format:

 field-name = token “.” domain-name

where the domain-name shall be Vendor Domain Name, and in addition shall satis fy the token

format as defined in RFC 2616, c lause 2.2.

Example vendor-defined SSDP header fields :

 myheader.philips.com: “some value”

 myheader.sony.com: “other value”

1.1.4 UUID format and recommended generation a lgorithms

UPnP 2.0 devices shall format UUIDs according to the format specified below. However,
UPnP 2.0 control points shal l also be able to accept UUIDs that have not been formatted

according to the rules specified below, as formatting rules are not spec ified in UPnP 1.0 other
than the requirement that a UUID is a s t ring.

UUIDs are 128 bit numbers that shall be formatted as s pecified by the fol lowing grammar
(taken from [1]):

 UUID = 4 * <hexOctet> “-” 2 * <hexOctet> “-” 2 * <hexOctet> “-” 2 * <hexOctet> “-” 6 * <hexOctet
 hexOctet = <hexDigit> <hexDigit>

 hexDigit = “0”|“1”|“2”|“3”|“4”|“5”|“6”|“7”|“8”|“9”|“a”|“b”|“c”|“d”|“e”|“f”|“A”|“B”|“C”|“D”|“E”|“F”

The fol lowing is an example of the s t ring representation of a UUID:

 “2fac1234-31f8-11b4-a222-08002b34c003”

UUIDs are allowed to be generated us ing any suitable generat ion algorithm2 that satis fies the

fol lowing requirements :

a) It is very unlikely to duplicate a UUID generated from some other resource.

b) It maps down to a 128-bit number.

c) UUIDs shall remain fixed over t ime.

The fol lowing UUID generat ion algorithm is recommended:

Time & MAC-based algorithm as spec ified in [1], where the UUID is generated once and
s tored in non-volat i le memory if available.

1.1.5 SSDP processing rules

When an SSDP message is received that is not formatted according to clause 1.1, “SSDP

message format ” (the c lauses above), receivers should s ilent ly discard the message.
Receivers are al lowed to t ry to parse such SSDP messages to t ry to interoperate.

2 The UUID generation algorithm specified in [1] is RECOMMENDED, but is not MANDATORY,

other UUID generation algorithms may be used ins tead, as long as they satis fy the three
requirements.

 — 23 —

© 2014 UPnP Forum. All Rights Reserved.

When pars ing SSDP header fields , receivers shall parse all required SSDP-defined header

fields (see c lause 1.2, “Advert isement” and clause 1.3, “Search” below) and are allowed to
sk ip all other header fields. Receivers shall be able to skip header fields they do not
unders tand.

1.2 Advertisement

When a device is added to the network, the device advert ises its services to control points . It
does this by mult icast ing discovery messages to a standard address and port

(239.255.255.250:1900). Control points lis ten to this port to detect when new capabilit ies are
available on the network . To advert ise the full extent of its capabil ities, a device shall
mult icast a number of discovery messages corresponding to each of i ts root devices,

embedded devices and services. Each message contains informat ion spec ific to the
embedded device (or service) as well as informat ion about its enc losing device. Messages
shall include durat ion unti l the advert isements expire; i f the device remains available, the

advert isements shall be re-sent (with new duration). If the device becomes unavailable, the
device should explic itly cancel i ts advertisements, but i f the device is unable to do this, the
advert isements wil l expire on their own. If a mult i -homed device becomes unavailable on

some, but not al l, of i ts UPnP -enabled interfaces, the device should explic itly cancel its
advert isements on the affected UPnP -enabled interfaces (but NOT on the unaffected UPnP -
enabled interfaces), but i f the device is unable to do this, the advert isements on those

interfaces or IP addresses will expire on their own. In addition, messages include the
fol lowing header fields defined in this document: BOOTID.UPNP.ORG,
NEXTBOOTID.UPNP.ORG, CONFIGID.UPNP.ORG, SEARCHPORT.UPNP.ORG. The field

value of the BOOTID.UPNP.ORG header field shall be increased each time a device (re)joins
the network and sends an initial announce (a “reboot” in UPnP terms), or adds a UPnP -
enabled interface. Unless the device explic it ly announces a change in the

BOOTID.UPNP.ORG field value using an SSDP message, as long as the device remains
cont inuously available in the network, the same BOOTID.UPNP.ORG field value shall be used
in all repeat announcements, search res ponses, update messages and eventually bye -bye

messages. Control points can parse this header field to detect whether the device has
potent ial ly los t its state (event subscript ions will have been lost, DCP specific s tate may have
been changed) due to a “reboot”. Since a device cannot change IP addresses without

changing the BOOTID.UPNP.ORG field value, the BOOTID.UPNP.ORG field value can also
be used to dist inguish multi -homed devices (in this case, a control point wil l see SSDP
messages from different IP addresses with the same UUID, BOOTID.UPNP.ORG field value)

from devices that changed IP addresses (in this case, the BOOTID.UPNP.ORG field value will
be different). The field value of the NEXTBOOTID.UPNP.ORG header field indicates the field
value of the BOOTID.UPNP.ORG header field that a multi -homed device intends to use in

future announcements after adding a new UPnP -enabled interface. The field value of the
CONFIGID.UPNP.ORG header field identifies the current set of device and service
descriptions; control points can parse this header field to detect whether they need to send

new descript ion query messages. The field value of the SEARCHPORT.UPNP.ORG header
field identifies the port at which the device l istens to unicast M -SEARCH messages; control
points can parse this header field to know to which port unicast M -SEARCH messages shall

be sent . These header fields are explained in detail below.

1.2.1 Advertisement protocols and standards

To send (and receive) advert isements , devices (and control points) use the fo llowing subset

of the overall UPnP protocol stack. (The overall UPnP protocol stack is lis ted at the beginning
of this document.)

Figure 1-2: — Advertisement protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP De vice Architecture [green-bold]

 — 24 —

© 2014 UPnP Forum. All Rights Reserved.

SSDP [blue]

UDP [black]

IP [black]

At the highest layer, discovery messages contain vendor -specific information, e.g., URL for

the device description and device identifier. Moving down the s tack, vendo r content is

supplemented by informat ion from a UPnP Forum work ing committee, e.g., device type.
Messages from the layers above are hosted in UPnP -specific protocols , defined in this
document. In turn, the SSDP messages are delivered via UDP over IP. For r eference, colors

in [square brackets] above indicate which protocol defines specific header fields and field
values in discovery messages l is ted below.

1.2.2 Device avai lable - NOTIFY w ith ssdp:a l ive

When a device is added to the network, it shall mult icast discovery messages to advert ise its
root device, any embedded devices, and any services. Each discovery message shall contain
four major components :

a) A not ification type (e.g. , device type), sent in an NT (Not ificat ion Type) header field.

b) A composite ident ifier for the advert isement, sent in a USN (Unique Service Name) header
field.

c) A URL for more informat ion about the device (or enclos ing device in the case of a service),
sent in a LOCATION header field.

d) A durat ion for which the advert isement is valid, sent in a CACHE-CONTROL header field.

To advert ise its capabil it ies, a device multicasts a number of discovery messages. Spec ifically,
a root device shall mult icast:

 Three discovery messages for the root device.

Table 1-1 — Root device discovery messages

 NT USN a

1 upnp:rootdevice uuid:device-UUID::upnp:rootdevice

2 uuid:device-UUID b uuid:device-UUID (for root device UUID)

3 ur n:schemas-upnp-org:device:deviceType:ver
or

ur n:domain-name:device:deviceType:ver

uuid:device-UUID::urn:schemas-upnp-
o rg :device:deviceType :ver (of r oot device)

or
uuid:device-UUID::urn:domain-name:device:deviceType:ver

a Note that the prefix of the USN header f ield (before the double colon) shall match the value of the UDN element in

the dev ice description. (Clause 2, “Description” explains the UDN element.)

b Note that the f ield value of this NT header f ield shall match the value of the UDN element in the dev ice
desc ription.

 Two discovery messages for each embedded device.

Table 1-2 — Embedded device discovery messages

 NT USN a

1 uuid:device-UUID b uuid:device-UUID

2 ur n:schemas-upnp-org:device:d

eviceType:ver
or
ur n:domain-name:device:deviceType:ver

uuid:device-UUID::urn:schemas-upnp-

o rg :device:deviceType :ver
or
uuid:device-UUID::urn:domain-name:device:deviceType:ver

 — 25 —

© 2014 UPnP Forum. All Rights Reserved.

 NT USN a

a Note that the prefix of the USN header f ield (before the double colon) shall match the value of the UDN element

in the dev ice description. (Clause 2 , “Description” explains the UDN element.)

b Note that the f ield value of this NT header f ield shall match the value of the UDN element in the dev ice

desc ription

 Once for each service type in each device.

Table 1-3 — Service discovery messages

 NT USN a

1 ur n:schemas-upnp-
o rg :service:serviceType :ver

or
ur n:domain-name:service:serviceType:ver

uuid:device-UUID::urn:schemas-upnp-
o rg :service:serviceType :ver

or
uuid:device-UUID::urn:domain-
name:service:serviceType:ver

a Note that the f ield value of this NT header f ield shall match the value of the UDN element in the dev ice

desc ription.

If a root device has d embedded devices and s embedded services but only k dist inct service

types, this works out to 3+2d+k requests . If a particular device or embedded device contains

mult iple instances of a particular service type, it is only necessary to advert ise the service
type once (rather than once for each instance). Note that i f two embedded devices contain a
service of the same service type, these services shall st il l be separately announced. This

advert ises the full extent of the device's capabil ities to interested control points. These
messages shall be sent out as a series with roughly comparable expirat ion t imes; order is
unimportant , but refreshing or canceling individual messages is PROHIBITED.

Updated UPnP device and service types are required to be ful ly backward compatible with
previous vers ions of the same type. Devices shall advert ise the highest supported vers ion of

each supported type. For example, i f a device supports vers ion 2 of the “Audio” service, it
would advert ise only version 2, even though it also supports vers ion 1. It shall NOT advert ise
additional supported versions. Control points that support a given vers ion of a device or

service are able to also interact with higher vers ions because of this backward compatibil ity
requirement, but only us ing the funct ionality that was defined in the lower ve rs ion. For
example, i f a control point supports only vers ion “1” of the “Audio” service, and a device

advert ises that it supports version “2” of the “Audio” service, the control point shall recognize
the device and be able to use it .

Choos ing an appropriat e duration for advert isements is a balance between minimizing
network t raffic and maximizing freshness of device s tatus. Relat ively short durat ions c lose to
the minimum of 1800 seconds will ensure that control points have current device status at the

expense of additional network t raffic; longer durat ions, say on the order of a day, compromise
freshness of device status but can significantly reduce network t raffic. Generally, device
vendors should choose a value that corresponds to expected device usage: sh ort durat ions

for devices that are expected to be part of the network for short periods of t ime, and
s ignificant ly longer durations for devices expected to be long -term members of the network.
Devices that frequent ly connect to and leave the network (such as mobile wireless devices)

should use a shorter duration so that control points have a more accurate view of their
availabili ty. Advert isements in a set (both initial and subsequent) should have comparable
durat ions. Advert isements in the init ial set should be sent as quickly as possible. Subsequent

refreshments of the advert isements are allowed to be spread over time rather than being sent
as a group.

Spreading refreshments of advert isements over t ime rather than being sent as a group
improves rel iability in case there are network gl itches: without increasing the total network
load it increases the frequency of sending announcements from devices to control points. The

two figures below show the announcement behavior without spreading and with spreading the

 — 26 —

© 2014 UPnP Forum. All Rights Reserved.

messages over the ent ire interval. The figures show a t imeline from the moment a device joins

the network, sends its init ial announcements (represented by vert ical l ines), and subsequent ly
periodically sends repeat announcements. In the second figure, these repeat announcements
are spread over the ent ire period rather than sent as a bunch.

Figure 1-3: — Ini tia l and repea t announcements, no announcement spreading

 — 27 —

© 2014 UPnP Forum. All Rights Reserved.

Figure 1-4: — Ini tia l and repea t announcements, message spreading of repea t

announcements

Devices should wait a random interval (e.g. between 0 and 100mill iseconds) before sending
an initial set of advert isements in order to reduce the l ikelihood of network storms ; this
random interval should also be applied on occasions where the device obtains a new IP

address or a new UPnP-enabled interface is ins talled.

Due to the unreliable nature of UDP, devices should send the ent ire set of discovery

messages more than once with some delay between sets e.g. a few hundred mil liseconds. To
avoid network congestion discovery messages should not be sent more than three times. In
addition, the device shall re-send its advert isements periodically prior to expiration of the

durat ion spec ified in the CACHE-CONTROL header field; i t is Recommended that such
refreshing of advertisements be done at a randomly -dis t ributed interval of less than one-half
of the advert isement expirat ion time, so as to provide the opportunity for recovery from lost

advert isements before the advert isement expires, and to dist ribute over t ime the
advert isement refreshment of mult iple devices on the network in order to avoid spikes in
network t raffic. Note that UDP packets are also bounded in length (perhaps as sm all as 512

Bytes in some implementations); each discovery message shall fit entirely in a s ingle UDP
packet. There is no guarantee that the above 3+2 d+k messages will arrive in a particular
order.

A multi -homed device shall perform the above announcement procedures on each of its
UPnP-enabled interfaces. Advert isements sent on mult iple UPnP -enabled interfaces shall

contain the same field values except for the HOST, CACHE -CONTROL and LOCATION
header fields. The HOST field value of an advert isement shall be the standard multicast
address spec ified for the protocol (IPv4 or IPv6) used on the interface. The URL specified by

the LOCATION header field shall be reachable on the interface on which the advert isement is
sent . Finally , advert isements sent on different interfaces are allowed to have different
CACHE-CONTROL field values and are allowed to be sent with different frequenc ies.

When a device is added to the network, it shall send a mult icast message with method
NOTIFY and ssdp:alive in the NTS header field in the following format. Values in italics are

placeholders for ac tual values.

 NOTIFY * HTTP/1.1
 HOST: 239.255.255.250:1900
 CACHE-CONTROL: max-age = seconds until advertisement expires
 LOCATION: URL for UPnP description for root device
 NT: notification type
 NTS: ssdp:alive
 SERVER: OS/version UPnP/2.0 product/version
 USN: composite identifier for the advertisement
 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update

message
 CONFIGID.UPNP.ORG: number used for caching description information
 SEARCHPORT.UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

Note: No body is sent for messages with method NOTIFY, but note that the message shall
have a blank l ine fol lowing the las t header field .

The TTL for the IP packet should default to 2 and should be configurable.

Listed below are details for the request line and header fields appearing in the l ist ing above.

Field names are not case sens it ive. All field values are case sens it ive except where noted.

 — 28 —

© 2014 UPnP Forum. All Rights Reserved.

Request l ine

Shall be “NOTIFY * HTTP/1.1”

NOTIFY

Method f or sending notif ications and events.

*

Message applies generally and not to a specif ic resource. shall be *.

HTTP/1.1

HTTP vers ion.

Header fie lds

HOST

Required. Field value contains mult icas t address and port reserved for SSDP by Internet Ass igned Numbers
Author ity (IA NA). shall be 239.255.255.250 :1900 . If the port number (“:1900”) is omitted, the receiver shall

assume the default SSDP port number of 1900.

CACHE-CONTROL

Required. Field value shall have the max-age directive (“max-age=”) follow ed by an integer that spec if ies the

number of seconds the advertisement is valid. After this duration, control points should assume the device (or
serv ice) is no longer available; as long as a control point has received at leas t one adver tisement that is s till
valid from a root dev ice, any of its embedded dev ices or any of its serv ices, then the control point can assume
that all are available. The number of seconds should be greater than or equal to 1800 seconds (30 minutes),

although exceptions are def ined in the tex t above. Specif ied by UPnP vendor. Other directives shall NOT be
sent and shall be ignored when received.

LOCATION

Required. Field value contains a URL to the UPnP descr iption of the root dev ic e. Normally the host por tion

contains a literal IP address rather than a domain name in unmanaged netw orks. Spec if ied by UPnP vendor.
Single absolute URL (see RFC 3986).

NT

Required. Field value contains Notif ication Type. shall be one of the follow ing. (See Table 1-1, “Root dev ice
discovery messages”, Table 1-2, “Embedded dev ice discovery messages” , and Table 1-3 , “Serv ice discovery
messages” above.) Single URI.

upnp:rootdevice

Sent once for root device.

uuid:device-UUID

Sent once for each dev ice, root or embedded, w here device-UUID is specif ied by the UPnP vendor .

See clause 1.1.4, “UUID format and recommended generation algor ithms ” for the MA NDA TORY UUID
f ormat.

urn:schemas-upnp-org:device:deviceType:ver

Sent once for each dev ice, root or embedded, w here deviceType and ver are defined by UPnP Forum
w orking committee, and ver specif ies the version of the device type.

urn:schemas-upnp-org:service:serviceType:ver

Sent once for each serv ice w here serviceType and ver are defined by UPnP Forum w orking committee
and ver specif ies the version of the service type.

urn:domain-name:device:deviceType:ver

Sent once for each dev ice, root or embedded, w here domain-name is a Vendor Domain Name,
deviceType and ver are defined by the UPnP vendor , and ver spec if ies the vers ion of the dev ice type.

Per iod characters in the V endor Domain Name shall be replaced w ith hyphens in accordance w ith
RFC 2141.

 — 29 —

© 2014 UPnP Forum. All Rights Reserved.

urn:domain-name:service:serviceType:ver

Sent once for each serv ic e w here domain-name is a Vendor Domain Name, serviceType and ver are

defined by UPnP vendor, and ver specif ies the vers ion of the serv ice type. Per iod characters in the
V endor Domain Name shall be replaced with hyphens in accordance with RFC 2141.

NTS

Required. Field value contains Notif ication Sub Type. shall be ssdp:alive. Single URI.

SERVER

Required. Spec if ied by UPnP vendor. Str ing. Field value shall begin w ith the follow ing “product tokens”
(defined by HTTP/1.1) . The f irst produc t token identifes the o perating system in the form OS name /OS version,
the second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token identifes the
product us ing the form product name /product vers ion. For example, “SERV ER: unix /5.1 UPnP/2.0

MyProduct/1.0”.

USN

Required. Field value contains Unique Serv ice Name. Identif ies a unique instance of a dev ice or serv ice. shall

be one of the follow ing. (See Table 1-1, “Root dev ice discovery messages” , Table 1-2, “Embedded dev ice
discovery messages”, and Table 1-3, “Service discovery messages” above.) The prefix (before the double
colon) shall match the value of the UDN element in the dev ice descr iption. (Clause 2, “Description” explains
the UDN element.) Single URI.

uuid:device-UUID::upnp:rootdevice

Sent once for root dev ice w here device-UUID is spec if ied by UPnP vendor . See c lause 1.1.4, “UUID

f ormat and recommended generation algorithms” for the MANDA TORY UUID f ormat.

uuid:device-UUID

Sent once for every dev ice, root or embedded, w here device-UUID is spec if ied by the UPnP vendor .

See c lause 1.1.4, “UUID f ormat and recommended generation algor ithms”for the MA NDA TORY UUID
f ormat.

uuid:device-UUID::urn:schemas-upnp-org:device:deviceType:ver

Sent once for every dev ice, root or embedded, w here device-UUID is spec if ied by the UPnP vendor ,
deviceType and ver are defined by UPnP Forum w orking committee and ver spec if ies vers ion of the

dev ice type. See clause 1.1.4, “UUID f ormat and recommended generation algor ithms” for the
MA NDA TORY UUID f ormat.

uuid:device-UUID::urn:schemas-upnp-org:service:serviceType:ver

Sent once for every serv ice w here device-UUID is spec if ied by the UPnP vendor, serviceType and ver

are def ined by UPnP Forum w orking committee and ver spec if ies version of the dev ice type. See

c lause 1.1.4, “UUID f ormat and recommended generation algor ithms” for the MA NDA TORY UUID
f ormat.

uuid:device-UUID::urn:domain-name:device:deviceType:ver

Sent once for every dev ice, root or embedded, w here device-UUID, domain-name (a Vendor Domain
Name), deviceType and ver are defined by the UPnP vendor and ver spec if ies the version of the

dev ice type. See clause 1.1.4 , “UUID f ormat and recommended generation algor ithms” for the
MA NDA TORY UUID f ormat. Per iod charac ters in the Vendor Domain Name shall be replaced by
hyphens in accordance with RFC 2141.

uuid:device-UUID::urn:domain-name:service:serviceType:ver

Sent once for every service w here device-UUID , domain-name (a Vendor Domain Name), serviceType
and ver are defined by the UPnP vendor and ver spec if ies the vers ion of the serv ice type. See c lause

1.1.4 , “UUID f ormat and recommended generation algor ithms” for the MA NDA TORY UUID f ormat.
Per iod charac ters in the Vendor Domain Name shall be replaced by hyphens in accordance w ith RFC
2141.

BOOTID.UPNP.ORG

Required. The BOOTID.UPNP.ORG header f ield represents the boot ins tance of the device expressed
according to a monotonically increasing value. Its f ield value shall be a non-negative 31-bit integer; ASCII
encoded, decimal, w ithout leading zeros (leading zeroes , if present, shall be ignored by the rec ipient) that shall
be increased on each init ial announce of the UPnP dev ice or shall be the same as the f ield value of the

NEXTBOOTID.UPNP.ORG header f ield in the las t sent SSDP update message. Its f ield value shall remain the
same on all per iodically repeated announcements . A convenient mechanism is to set this f ield value to the time
that the dev ice sends its init ial announcement, expressed as seconds elapsed s ince midnight January 1, 1970;

for devices that have a notion of t ime, this w i ll not require any addit ional s tate to remember or be “f lashed”.
How ever, it is perfec tly acceptable to use a s imple boot counter that is incremented on every init ial

 — 30 —

© 2014 UPnP Forum. All Rights Reserved.

announcement as a f ield value of this header f ield. As such, control points shall NOT v iew this header f ield as

a times tamp. The BOOTID.UPNP.ORG header f ield shall be inc luded in all announcements of a root dev ice, its
embedded dev ices and its serv ices . Unless the dev ice explic it ly updates its value by sending an SSDP update
message, as long as the device remains available in the netw ork, the same BOOTID.UPNP.ORG f ield value
shall be used in all announcements, search responses, update messages and eventually bye -bye messages.

Control points can use this header f ield to detect the case w hen a dev ice leaves and rejoins the netw ork

(“reboots” in UPnP terms) . It can be used by control points for a number of purposes such as re -establishing
des ired event subscr iptions, checking for changes to the dev ice state that w ere not evented since the dev ice
w as off-line.

CONFIGID.UPNP.ORG

Required. The CONFIGID.UPNP.ORG f ield value shall be a non-negative, 31-bit integer, A SCII encoded,
dec imal, w ithout leading zeros (leading zeroes, if present, shall be ignored by the rec ipient) that shall
represent the configuration number of a root dev ice. UPnP 2.0 dev ices are allow ed to be freely ass ign conf igid

numbers from 0 to 16777215 (2^24-1). Higher numbers are reserved for future use, and can be ass igned by
the Technical Committee. The configurat ion of a root dev ice cons ists of the follow ing information: the DDD of
the root device and all its embedded dev ices, and the SCPDs of all the contained services. If any part of the
configuration changes , the CONFIGID.UPNP.ORG f ield value shall be changed. The CONFIGID.UPNP.ORG

header f ield shall be inc luded in all announcements of a root dev ice, its embedded dev ices and its serv ices.
The configuration number that is present in a CONFIGID.UPNP.ORG f ield value shall satisfy the following rule:

 if a dev ice sends out tw o messages w ith a CONFIGID.UPNP.ORG header f ield w ith the same f ield value K,
the configuration shall be the same at the moments that these messages were sent.

Whenever a control point receives a CONFIGID.UPNP.ORG header f ield w ith a f ield value K, and subsequently

dow nloads the conf iguration information, this configuration information is assoc iated w ith K. As an addit ional

safeguard, the dev ice shall include a configId attr ibute w ith value K in the returned description (see c lause 2,
“Descr iption”). The follow ing caching rules for control points supersede the caching rules that are def ined in
UPnP 1.0:

 Control points are allow ed to ignore the CONFIGID.UPNP.ORG header f ield and use the caching rules that

are based on advertisement expirations as def ined in Clause 2, Descr iption: as long as at least one of the
discovery advertisements from a root dev ice, its embedded dev ices and its serv ices have not expired, a

control point is allow ed to assume that the root device and all its embedded dev ices and all its services
are available. The dev ice and serv ice descr iptions are allow ed to be retr ieved at any point s ince the
dev ice and service descriptions are s tatic as long as the device and its services are available.

 If no conf iguration number is inc luded in a received SSDP message, control points should cache based on
advertisement expirations as defined in Clause 2 Description.

 If a CONFIGID.UPNP.ORG header f ield w ith f ield value K is included in a received SSDP message, and a
control point has already cached information assoc iated w ith f ield value K, the control point is allow ed to

use this cached information as the current configuration of the dev ice. Otherw ise, a control point should
assume it has not cached the current conf iguration of the dev ice and needs to send new descr iption query
messages.

The CONFIGID.UPNP.ORG header f ield reduces peak loads on UPnP dev ices dur ing startup and during
netw ork hiccups. Only if a control point receives an announcement of an unknow n conf iguration is dow nloading
required.

SEARCHPORT.UPNP.ORG

A llow ed. If a dev ice does not send the SEA RCHPORT.UPNP.ORG header f ield, it shall respond to unicas t M-
SEA RCH messages on port 1900. Only if port 1900 is unavailable it is allow ed for a dev ice select a different

por t to respond to unicast M-SEA RCH messages . If a dev ice sends the SEA RCHPORT.UPNP.ORG header
f ield, its f ield value shall be an A SCII encoded integer, dec imal, w ithout leading zeros (leading zeroes, if
present, shall be ignored by the rec ipient), in the range 49152-65535 (RFC 4340). The dev ice shall respond to
unicast M-SEA RCH messages that are sent to the advertised port.

SECURELOCATION.UPNP.ORG

A llow ed. Required when Device Protection is implemented.

The SECURELOCA TION.UPNP.ORG header shall prov ide a base URL w ith “https:” for the scheme component
and indicate the correc t “por t” subcomponent in the “author ity” component for a TLS connection. Because the
scheme and authority components are not inc luded in relative URLs , these components are ob tained from the

base URL prov ided by either LOCA TION or SECURELOCA TION.UPNP.ORG. See for more information Ref
DEV ICEPROTECTION.

 Note: No responses are sent for messages with method NOTIFY.

 — 31 —

© 2014 UPnP Forum. All Rights Reserved.

1.2.3 Device unavailable -- NOTIFY w ith ssdp:byebye

When a device and its services are going to be removed from the network, the device should

mult icast an ssdp:byebye message corresponding to each of the ssdp:al ive messages it
mult icasted that have not already expired. If the device is removed abruptly from the network,
i t might not be possible to multicast a message. As a fallback, discovery messages shall

include an expiration value in a CACHE-CONTROL field value (as explained above); i f not re -
advert ised, the discovery message eventually expires on its own.

(Note: when a c ontrol point is about to be removed from the network, no discovery -related
act ion is required.)

When a device is about to be removed from the network, i t should explic it ly revoke its
discovery messages by sending one mult icast message for each ssdp:alive message it sent.
Each multicast message shall have method NOTIFY and ssdp:byebye in the NTS header

field in the fol lowing format. Values in i tal ics are placeholders for ac tual values.

When a multi -homed device is about to be removed from the network on one or more of its

UPnP-enabled interfaces, it should explicit ly revoke its discovery messages by sending one
mult icast message for each ssdp:alive message it has previously sent on those interfaces
and IP addresses. It shall NOT send such mult icast messages t o any of the UPnP-enabled

interfaces that remain available.

When ssdp:byebye messages are sent on mult iple UPnP -enabled interfaces, the messages

shall contain identical field values except for the HOST field value. The HOST field value of
an advert isement shall be the standard multicast address specified for the protocol (IPv4 or
IPv6) used on the interface.

 NOTIFY * HTTP/1.1
 HOST: 239.255.255.250:1900
 NT: notification type
 NTS: ssdp:byebye
 USN: composite identifier for the advertisement

 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update

message
 CONFIGID.UPNP.ORG: number used for caching description information

Note: No body is present for messages with method NOTIFY, but note that the message shall
have a blank l ine fol lowing the las t header field.

The TTL for the IP packet should default to 2 and should be configurable.

Listed below are details for the request line and header fields appearing in the l ist ing above.
Field names are not case sens it ive. All field values are case sens it ive except where noted.

Request l ine

Shall be “NOTIFY * HTTP/1.1”

NOTIFY

Method f or sending notif ications and events.

*

Message applies generally and not to a specif ic resource. shall be *.

HTTP/1.1

HTTP vers ion.

Header fie lds

 — 32 —

© 2014 UPnP Forum. All Rights Reserved.

HOST

Required. Field value contains mult icas t address and port reserved for SSDP by Internet Ass igned Numbers
Author ity (IA NA). shall be 239.255.255.250 :1900 . If the port number (“:1900”) is omitted, the receiver shall
assume the default SSDP port number of 1900.

NT

Required. Field value contains Notif ication Type. (See list of required f ield values for the NT header f ield in
NOTIFY w ith ssdp:alive above.) Single URI.

NTS

Required. Field value contains Notif ication Sub Type. shall be ssdp:byebye . Single URI.

USN

Required. Field value contains Unique Serv ice Name. (See lis t of required f ield values for the USN header f ield
in NOTIFY w ith ssdp:alive above.) Single URI.

BOOTID.UPNP.ORG

Required. As defined in c lause 1.2, and 1.2.2.

CONFIGID.UPNP.ORG

Required. As defined in c lause 1.2, and 1.2.2.

Note: No responses are sent for messages with method NOTIFY.

If a control point has received at least one ssdp:byebye message of a root device, any of its
embedded devices or any of its services then the control point can assume that al l are no

longer available. As a fallback, i f a control point fai ls to receive notificat ion that a root device,
i ts embedded devices and its services are unavailable, the original discovery messages will
eventually expire y ielding the same effect . Only when all original advert isements of a root

device, its embedded devices and its services have expired can a control point assume that
they are no longer available.

If a mult i -homed control point has received at least one ssdp:byebye message of a root device,
any of its embedded devices or any of its services on one of its UPnP -enabled interfaces then
the control point can assume that all are no longer available on that UPnP -enabled interface.

However, the control point shall NOT assume that the device is also no longer available on all
of its other UPnP-enabled interfaces. As a fallback, i f a control point fails to receive
not ification that a root device, i ts embedded devices and its services are unavailable on a

part icular UPnP-enabled interface, the original discovery messages will eventually expire
y ielding the same effect. Only when all original advert isements of a root device, its embedded
devices and its services received on a UPnP -enabled interface have expired can a control

point assume that they are no longer available on that interface or IP address.

1.2.4 Device Update – NOTIFY w ith ssdp:update

When a new UPnP-enabled interface is added to a mult i -homed device, the device shall

increase its BOOTID.UPNP.ORG field value, multicast a n ssdp:update message for each of
the root devices, embedded devices and embedded services to all of the ex ist ing UPnP -
enabled interfaces to announce a change in the BOOTID.UPNP.ORG field value, and re -

advert ise itself on all (existing and new) UPnP -enabled interfaces with the new
BOOTID.UPNP.ORG field value. Similarly, i f a mult i -homed device loses connectivity on a
UPnP-enabled interface and regains connect ivi ty, or i f the IP address on one of the UPnP -

enabled interfaces changes, the device shall increase the BOOTID.UPNP.ORG field value,
mult icast an ssdp:update message for each of the root devices, embedded devices and
embedded services to al l the unaffected UPnP-enabled interfaces to announce a change in

the BOOTID.UPNP.ORG field value, and re-advert ise itself on all (affected and unaffected)
UPnP-enabled interfaces with the new BOOTID.UPNP.ORG fiel d value. In all cases, the
ssdp:update message for the root devices shall be sent as soon as poss ible. Other

ssdp:update messages should be spread over t ime. However, all ssdp:update messages
shall be sent before any announcement messages with the new BOOTID.UPNP.ORG field
value can be sent .

 — 33 —

© 2014 UPnP Forum. All Rights Reserved.

When ssdp:update messages are sent on mult iple UPnP -enabled interfaces, the messages

shall contain identical field values except for the HOST and LOCATION field values. The
HOST field value of an advert isement shall be the s tandard multicast address spec ified for the
protocol (IPv4 or IPv6) used on the interface. The URL spec ified in the LOCATION field value

shall be reachable on the interface on which the advert isement is sent .

 NOTIFY * HTTP/1.1

 HOST: 239.255.255.250:1900

 LOCATION: URL for UPnP description for root device

 NT: notification type

 NTS: ssdp:update
 USN: composite identifier for the advertisement

 BOOTID.UPNP.ORG: BOOTID value that the device has used in its previous announcements

 CONFIGID.UPNP.ORG: number used for caching description information

 NEXTBOOTID.UPNP.ORG: new BOOTID value that the device will use in subsequent announcements

 SEARCHPORT.UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

Note: No body is present for messages with method NOTIFY, but note that the message shall
have a blank l ine fol lowing the las t header field.

The TTL for the IP packet should default to 2 and should be configurable.

Listed below are details for the request line and header fields appearing in the l ist ing above.

Field names are not case sens it ive. All field values are case sens it ive except where noted.

Request l ine

Shall be “NOTIFY * HTTP/1.1”

NOTIFY

Method f or sending notif ications and events.

*

Message applies generally and not to a specif ic resource. Shall be *.

HTTP/1.1

HTTP vers ion.

Header fie lds

HOST

Required. Field value contains mult icas t address and port reserved for SSDP by Internet Ass igned Numbers
Author ity (IA NA). Shall be 239.255.255.250 :1900. If the port number (“:1900”) is omitted, the receiver shall
assume the default SSDP port number of 1900.

LOCATION

Required. Field value shall be the same as the LOCA TION field value that has been sent in prev ious SSDP
messages. Single absolute URL (see RFC 3986).

NT

Required. Field value contains Notif ication Type. (See list of required f ield v alues for the NT header f ield in
NOTIFY w ith ssdp:alive above.) Single URI.

NTS

Required. Field value contains Notif ication Sub Type. Shall be ssdp:update . Single URI.

USN

Required. Field value contains Unique Serv ice Name. (See lis t of required f ield valu es for the USN header f ield
in NOTIFY w ith ssdp:alive above.) Single URI.

BOOTID.UPNP.ORG

Required. As defined in c lause 1.2, and 1.2.2, Field value shall be the same as the BOOTID.UPNP.ORG f ield
value that has been sent in previous SSDP messages.

 — 34 —

© 2014 UPnP Forum. All Rights Reserved.

CONFIGID.UPNP.ORG

Required. As defined in c lause 1.2, and 1.2.2.

NEXTBOOTID.UPNP.ORG

Required. Field value contains the new BOOTID.UPNP.ORG f ield value that the device intends to use in the
subsequent dev ice and service announcement messages . Its f ield value shall be a non-negative 31-bit integer;
ASCII encoded, dec imal, w ithout leading zeros (leading zeroes , if present, shall be ignored by the recipient)
and shall be greater than the f ield value of the BOOTID.UPNP.ORG header f ield.

SEARCHPORT.UPNP.ORG

A llow ed. As defined in clause 1.2, and 1.2.2.

SECURELOCATION.UPNP.ORG

A llow ed. As defined in section 1.2.2.

Note: No responses are sent for messages with method NOTIFY.

If a control point with a s ingle UPnP -enabled interface receives an ssdp:update message,

the NEXTBOOTID.UPNP.ORG field value replaces the BOOTID.UPNP.ORG field value that
the control point has previously recorded for the device. It can expect future announcements,
search responses, update messages and eventually bye -bye messages from the device to

contain the “new” BOOTID.UPNP.ORG field value (that is: the field value of the
NEXTBOOTID.UPNP.ORG header field in the received ssdp:update message). The field
value in the NEXTBOOTID.UPNP.ORG header field shall be recorded as the current

BOOTID.UPNP.ORG field value of the device which is to be expected on all subsequent
SSDP messages.

If a mult i-homed control point receives an ssdp:update message on its UPnP-enabled
interface(s), and the message arrives on the interface(s) that it uses for UPnP
communicat ions with the device (such as event subscript ions), it can assume that the device

has remained cont inuously available (including all device s tate), and that the
NEXTBOOTID.UPNP.ORG field value replaces the BOOTID.UPNP.ORG field value that the
control point has previous ly recorded for the device. It can expect future announcements,

search responses, update messages and eventually bye -bye messages from the device to
contain the “new” BOOTID.UPNP.ORG field value (that is: the field value of the
NEXTBOOTID.UPNP.ORG header field in the received ssdp:update message). The field

value in the NEXTBOOTID.UPNP.ORG header field shall be recorded as the current
BOOTID.UPNP.ORG field value of the device which is to be expected on all subsequent
SSDP messages.

If a control point receives an SSDP message with a BOOTID.UPNP.ORG field value different
(either higher or lower) from the value that the control point has previous ly recorded for the

device,it can assume that the device has become temporari ly unavailable on that interface
and has become available again, and any stored state informat ion about the devic e has
become invalid. It shall t reat the device as a newly discovered device.

1.3 Search

When a control point is added to the network, the UPnP discovery protocol allows that control
point to search for devices of interest on the network. It does this by multi casting on the

reserved address and port (239.255.255.250:1900) a search message with a pattern, or target,
equal to a type or ident ifier for a device or service. Responses from devices contain discovery
messages essentially identical to those advert ised by newly connected devices; the former

are unicast while the latter are multicast. Control points can also send a unicast search
message to a known IP address and port 1900 or the port indicated by
SEARCHPORT.UPNP.ORG, to verify the ex istence of UPnP devic e(s) and service(s) at the

IP address. For example, a unicast search may be used to quick ly check whether a known
UPnP device or service is s ti ll available on the network. Multi -homed control points are
al lowed to choose to send discovery messages on any, some or al l of its UPnP -enabled

interfaces.

 — 35 —

© 2014 UPnP Forum. All Rights Reserved.

1.3.1 Search protocols and standards

To search for devices (and be discovered by control points), control points (and devices) use

the fol lowing subset of the overall UPnP protocol stack. (The overall UPnP protocol sta ck is
l is ted at the beginning of this document.)

Figure 1-5: — Search protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP De vice Architecture [green-bold]

SSDP [blue]

UDP [black]

IP [black]

At the highest layer, search messages contain vendor -specific information, e.g., the control

point, device, and service identifiers. Moving down the s tack, vendor content is supplemented

by informat ion from a UPnP Forum working committee, e.g., device or service types.
Messages from the layers above are hosted in UPnP -specific protocols , defined in this
document. In turn, search requests are delivered via multicast and unicast SSDP messages

defined in this document. Search responses are delivered via a unicast SSDP messages
defined in this document. Both k inds of messages are delivered via UDP over IP. For
reference, colors in [square brackets] above indicate which protocol defines spec ific header

fields and field values in discovery messages l is ted below.

1.3.2 Search request w ith M-SEARCH

When a control point des ires to search the network for devices, it shall send a multicast

request with method M-SEARCH in the fol lowing format. Control points that know the address
of a spec ific device are allowed to also use a similar format to send unicast requests with
method M-SEARCH.

For mult icast M-SEARCH, the message format is defined below. Values in italics are
placeholders for ac tual values.

 M-SEARCH * HTTP/1.1
 HOST: 239.255.255.250:1900
 MAN: "ssdp:discover"
 MX: seconds to delay response
 ST: search target
 USER-AGENT: OS/version UPnP/2.0 product/version
 CPFN.UPNP.ORG: friendly name of the control point
 CPUUID.UPNP.ORG: uuid of the control point

Note: No body is present in requests with method M-SEARCH, but note that the message
shall have a blank l ine fol lowing the las t header field.

Note: The TTL for the IP packet should default to 2 and should be configurable.

Listed below are details for the request line and header fields appearing in the l ist ing above.

Field names are not case sens it ive. All field values are case sens it ive except where noted.

Request l ine

Shall be “M-SEARCH * HTTP/1.1”

M-SEARCH

Method f or search requests.

 — 36 —

© 2014 UPnP Forum. All Rights Reserved.

*

Reques t applies generally and not to a specif ic resource. shall be *.

HTTP/1.1

HTTP vers ion.

Header fie lds

HOST

Required. Field value contains the mult icas t address and port reserved for SSDP by Internet Assigned
Numbers Authority (IANA). shall be 239.255.255.250 :1900.

MAN

Required by HTTP Ex tension Framew ork. Unlike the NTS and ST f ield values, the f ield value of the MA N

header f ield is enc losed in double quotes ; it def ines the scope (namespace) of the extens ion. shall be
"s sdp:discover" .

MX

Required. Field value contains max imum w ait t ime in seconds. shall be greater than or equal to 1 and should

be less than 5 inc lus ive. Device responses should be delayed a random duration betw een 0 and this many
seconds to balance load for the control point w hen it processes responses . This value is allow ed to be
increased if a large number of devices are expected to respond. The MX f ield value should NOT be increased

to accommodate netw ork charac ter is tics such as latency or propagation delay (for more details, see the
explanation below). Specif ied by UPnP vendor. Integer.

ST

Required. Field value contains Search Target. shall be one of the follow ing. (See NT header f ield in NOTIFY
w ith ssdp:alive above.) Single URI.

ssdp:all

Search for all devices and services.

upnp:rootdevice

Search for root devices only.

uuid:device-UUID

Search for a par ticular dev ice. device-UUID spec if ied by UPnP vendor . See clause 1.1.4, “UUID format
and recommended generation algorithms” for the MANDA TORY UUID f ormat.

urn:schemas-upnp-org:device:deviceType:ver

Search for any dev ice of this type w here deviceType and ver are defined by the UPnP Forum w orking
committee.

urn:schemas-upnp-org:service:serviceType:ver

Search for any serv ice of this type w here serviceType and ver are defined by the UPnP Forum
w orking committee.

urn:domain-name:device:deviceType:ver

Search for any dev ice of this typew here domain-name (a Vendor Domain Name) , deviceType and ver
are defined by the UPnP vendor and ver spec if ies the highest spec if ies the highes t suppor ted vers ion

of the dev ice type. Per iod characters in the Vendor Domain Name shall be replaced w ith hyphens in
accordance with RFC 2141.

urn:domain-name:service:serviceType:ver

Search for any serv ice of this type. Where domain-name (a Vendor Domain Name), serviceType and

ver are defined by the UPnP vendor and ver spec if ies the highes t spec if ies the highest suppor ted

vers ion of the serv ice type. Per iod characters in the Vendor Domain Name shall be replaced w ith
hyphens in accordance with RFC 2141.

USER-AGENT

A llow ed. Spec if ied by UPnP vendor. Str ing. Field value shall begin w ith the follow ing “product tokens” (defined
by HTTP/1.1) . The f irs t product token identifes the operating system in the form OS name/OS vers ion , the

second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token identifes the product
us ing the form product name /product vers ion . For example, “USER-A GENT: unix/5.1 UPnP/2.0
MyProduct/1.0”.

 — 37 —

© 2014 UPnP Forum. All Rights Reserved.

TCPPORT.UPNP.ORG

A llow ed. A control point can reques t that a dev ice replies to a TCP port on the control point. When this header

is present it identif ies the TCP por t on w hich the dev ice can reply to the search. If a control point sends the
TCPPORT.UPNP.ORG header f ield, its f ield value shall be an ASCII encoded integer, dec imal, w ithout leading
zeros (leading zeroes , if present, shall be ignored by the rec ipient) , in the range 49152-65535 (RFC 4340).
The dev ice shall respond to unicast M-SEA RCH messages s imilar to sending the response to the or iginating

UDP por t except that the notif ication messages are sent to the advertised TCPPORT.UPNP.ORG por t over
TCP ins tead of UDP.

CPFN.UPNP.ORG

Required.Specif ies the fr iendly name of the control point. The fr iendly name is vendor spec if ic . When Dev ice

Protec tion is implemented the cpfn.upnp.org shall be the same as the <Name> of Dev ice Protec tion unless the
Dev ice Protection <Alias> is defined, in which case it shall use the <A lias>.

CPUUID.UPNP.ORG

A llow ed.uuid of the control point. When the control point is implemented in a UPnP dev ice it is recommended
to use the UDN of the co- located UPnP device. When implemented, all specif ied requirements for uuid usage
in dev ices also apply for control points .See section 1.1.4. Note that w hen Dev ice Protec tion is implemented
the CPUUID.UPNP.ORG shall be the same as the uuid used in Device Protection.

For unicast M-SEARCH, the message format is defined below. Values in italics are

placeholders for ac tual values.

 M-SEARCH * HTTP/1.1

 HOST: hostname:portNumber

 MAN: "ssdp:discover"

 ST: search target

 USER-AGENT: OS/version UPnP/2.0 product/version

Note: No body is present in requests with method M-SEARCH, but note that the message
shall have a blank l ine fol lowing the las t header field.

Listed below are details for the request line and header fields appearing in the l ist ing above.
Field names are not case sens it ive. All field values are case sens it ive except where noted.

Request l ine

Shall be “M-SEARCH * HTTP/1.1”

M-SEARCH

Method f or search requests.

*

Reques t applies generally and not to a specif ic resource. Shall be *.

HTTP/1.1

HTTP vers ion.

Header fie lds

HOST

Required. For unicas t reques ts, the f ield value shall be the domain name or IP address of the target dev ice
and either port 1900 or the SEA RCHPORT provided by the target device.

MAN

Required by HTTP Ex tension Framew ork. Unlike the NTS and ST f ield values, the f ield value of the MA N
header f ield is enc losed in double quotes; it def ines the scope (namespace) of the ex tens ion. Shall be
"s sdp:discover" .

ST

Required. Field value contains Search Target. Shall be one of the follow ing. (See NT header f ield in NOTIFY
w ith ssdp:alive above.) Single URI.

 — 38 —

© 2014 UPnP Forum. All Rights Reserved.

ssdp:all

Search for all devices and services.

upnp:rootdevice

Search for root devices only.

uuid:device-UUID

Search for a par ticular dev ice. device-UUID spec if ied by UPnP vendor . See clause 1.1.4, “UUID format
and recommended generation algorithms” for the MANDA TORY UUID f ormat.

urn:schemas-upnp-org:device:deviceType:ver

Search for any dev ice of this type w here deviceType and ver are defined by the UPnP Forum w orking
committee.

urn:schemas-upnp-org:service:serviceType:ver

Search for any serv ice of this type w here serviceType and ver are defined by the UPnP Forum
w orking committee.

urn:domain-name:device:deviceType:ver

Search for any dev ice of this type w here domain-name (a V endor Domain Name) , deviceType and ver
are def ined by the UPnP vendor and ver spec if ies the highest suppor ted vers ion of the dev ice type.

Per iod characters in the V endor Domain Name shall be replaced w ith hyphens in accordance w ith
RFC 2141.

urn:domain-name:service:serviceType:ver

Search for any serv ice of this type w here domain-name (a Vendor Domain Name), serviceType and
ver are defined by the UPnP vendor and ver spec if ies the highest supported version of the serv ice

type. Per iod charac ters in the Vendor Domain Name shall be replaced w ith hyphens in accordance
w ith RFC 2141.

USER-AGENT

A llow ed. Spec if ied by UPnP vendor. Str ing. Field value shall begin w ith the follow ing “product tokens” (defined
by HTTP/1.1) . The f irs t product token identifes the operating system in the form OS name/OS vers ion , the

second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token identifes the product
us ing the form product name /product vers ion . For example, “USER-A GENT: unix/5.1 UPnP/2.0

MyProduct/1.0”.

Due to the unreliable nature of UDP, control points should send each M-SEARCH message
more than once. As a fallback, to guard against the poss ibi lity that a device might not receive
the M-SEARCH message from a control point, a device should re-send its advert isements

periodically (see CACHE-CONTROL header field in NOTIFY with ssdp:alive above).

For a mult icast request, the control point should wait at least the amount of time spec ified in

the MX header field for responses to arrive from devices. The random dist ribut ion of
responses over the MX interval means that a responder is al lowed to send a response at MX
seconds after receiving the M-SEARCH request . The MX field value is allowed to be adjusted

by heuris tics at the requester based on, for example, observed number of responders.
Network characteris tics affect ing the propagation of t raffic cannot be addressed by increasing
the MX field value because of the reason c ited above. A requester is al lowed to adapt to

network characterist ics with heuris tics based on observed network behavior (the exact
heuristics are out of scope). The net effect is that the M -SEARCH request pers ists at the
requester for a period of time exceeding MX such that the characteristics of the network are

properly accommodated to minimize los t responses.

When a device receives a unicast M -SEARCH, it should respond within 1 second and it is

al lowed to respond sooner. The sender of the unicast request should wait at least 1 second
for the response.

Updated vers ions of device and service types are required to be fully backward compat ible
with previous vers ions. Devices shall respond to M-SEARCH requests for any supported
vers ion. For example, i f a device implements “urn:schemas-upnp-org:service:xyz:2”, it shall

respond to search requests for both that type and “urn:schemas-upnp-org:service:xyz:1”. The
response shall specify the same vers ion as was contained in the search request. If a control

 — 39 —

© 2014 UPnP Forum. All Rights Reserved.

point searches for a device or service of a particular vers ion and receives no responses

(presumably because no device present on the network supports the spec ified vers ion), but is
wil ling to operate us ing a lower vers ion, it is al lowed to repeat the search request specifying
the lower vers ion.

1.3.3 Search response

To be found by a network search, a device shall send a unicast UDP response to the source
IP address and port that sent the request to the multicast address. Devices respond if the ST

header field of the M-SEARCH request is “ssdp:all”, “upnp:rootdevice”, “uuid: ” fol lowed by a
UUID that exactly matches the one advert ised by the device, or i f the M -SEARCH request
matches a device type or service type supported by the device. Mult i -homed devices shall

send the search response us ing the same UPnP -enabled interface on which the search
request was received. The URL spec ified in the LOCATION field value shall spec ify an
address that is reachable on that interface.

Devices responding to a multicast M -SEARCH should wait a random period of time between 0
seconds and the number of seconds specified in the MX field value of the search request

before responding, in order to avoid flooding the request ing control point with search
responses from mult iple devic es. If the search request results in the need for a multiple part
response from the device, those mult iple part responses should be spread at random intervals
through the time period from 0 to the number of seconds specified in the MX header field.
Devices are allowed to assume an MX field value less than that specified in the MX header
field. If the MX header field spec ifies a field value greater than 5, the device should assume

that i t contained the value 5 or less. Devices shall not stop responding to ot her requests while
wait ing the random delay before sending a response.

For multicast M-SEARCH requests, i f the search request does not contain an MX header field,
the device shall s ilent ly discard and ignore the search request. If the MX header field speci fies

a field value greater than 5, the device should assume that i t contained the value 5 or less .

For multicast M-SEARCH requests, i f the search request does contains the
TCPPORT.UPNP.ORG header field, the device shall reply on the TCP port indicated in t he M-

SEARCH request, however it does not have to spread and repeat the required messages
s ince the t ransport over TCP is reliable, hence ignoring the MX value. The reply to the control
point can be formatted as 1 message reply ing to all applicable USN as r equired by the M-

SEARCH syntax. The lis t of USNs can be conveyed by a comma separated l ist , see RFC
2616. Hence using this option will reduce the number of messages sent as responses to the
M-SEARCH and wil l speed up the detect ion of devices in the network .

Any device responding to a unicast M -SEARCH should respond within 1 second.

The URL specified in the LOCATION header field of the M-SEARCH response shall be reachable

by the control point to which the response is direc ted.

Responses to M-SEARCH requests are intentionally parallel to advert isements , and as such,
fol low the same pat tern as lis ted for NOTIFY with ssdp:alive (above) except that ins tead of the NT
header field there is an ST header field here. The response shall be sent in the fol lowing

format. Values in i tal ics are placeholders for ac tual values.

 HTTP/1.1 200 OK

 CACHE-CONTROL: max-age = seconds until advertisement expires
 DATE: when response was generated
 EXT:

 LOCATION: URL for UPnP description for root device
 SERVER: OS/version UPnP/2.0 product/version
 ST: search target
 USN: composite identifier for the advertisement
 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update

message
 CONFIGID.UPNP.ORG: number used for caching description information
 SEARCHPORT.UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

 — 40 —

© 2014 UPnP Forum. All Rights Reserved.

Note: No body is present in a response to a request with method M-SEARCH, but note that the

message shall have a blank l ine fol lowing the las t header field.

(Note: No need to l imit TTL for the IP packet in response to a search request .)

Listed below are details for the header fields appearing in the lis ting above. Field names are

not case sens it ive. All field values are case sens it ive except where noted.

Response l ine

Shall be “HTTP/1.1 200 OK”

Header fie lds

CACHE-CONTROL

Required. Field value shall have the max-age directive (“max-age=”) follow ed by an integer that spec if ies the
number of seconds the advertisement is valid. After this duration, control points should assume the device (or

serv ice) is no longer available; as long as a control point has received at leas t one adver tisement that is s till
valid from a root dev ice, any of its embedded dev ices or any of its serv ices, then the control point can assume
that all are available. The number of seconds should be greater than or equal to 1800 seconds (30 minutes),
although exceptions are def ined in the text above. Spec if ied by UPnP vendor. Other directives shall notbe sent
and shall be ignored when received.

DATE

Recommended . Field value contains date w hen response w as generated. “rfc1123-date” as def ined in RFC
2616.

EXT

Required for backw ards compatibility with UPnP 1.0. (Header f ield name only; no f ield value.)

LOCATION

Required. Field value contains a URL to the UPnP d escr iption of the root dev ice. Normally the host por tion
contains a literal IP address rather than a domain name in unmanaged netw orks. Spec if ied by UPnP vendor.
Single absolute URL (see RFC 3986).

SERVER

Required. Spec if ied by UPnP vendor. Str ing. Field v alue shall begin w ith the follow ing “product tokens”
(defined by HTTP/1.1) . The f irst produc t token identifes the operating system in the form OS name /OS version,
the second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token ident ifes the

product us ing the form product name /product vers ion. For example, “SERV ER: unix /5.1 UPnP/2.0
MyProduct/1.0”.

ST

Required. Field value contains Search Target. Single URI. The response sent by the dev ice depends on the
f ield value of the ST header f ield that w as sent in the request. In some cases, the dev ice shall send mult iple
response messages as follows. If t he received ST field v alue was:

ssdp:all

Respond 3+2d+k t imes for a root device w ith d embedded dev ices and s embedded services but only
k dist inct serv ice types (see clause 1.1.2, “SSDP message header f ields” for a definit ion of each
message to be sent) . Field v alue for ST header f ield shall be the same as for the NT header f ield in
NOTIFY messages with s sdp:alive. (See above.)

upnp:rootdevice

Respond once for root device. Shall be upnp:rootdevice.

uuid:device-UUID

Respond once for each matching dev ice, root or embedded. Shall be uuid:device-UUID where device-

UUID is spec if ied by the UPnP vendor. See c lause 1.1.4, “UUID f ormat and recommended generation
algor ithms ” for the MA NDATORY UUID f ormat.

 — 41 —

© 2014 UPnP Forum. All Rights Reserved.

urn:schemas-upnp-org:device:deviceType:ver

Respond once for each matching device, root or embedded. Shall be
urn:schemas-upnp-org:device:deviceType :ver w here deviceType and ver are defined by UPnP Forum
w orking committee and ver shall contain the vers ion of the dev ice type contained in the M-SEA RCH
request.

urn:schemas-upnp-org:service:serviceType:ver

Respond once for each matching serv ice type. shall be
urn:schemas-upnp-org:service:serviceType:ver w here serviceType and ver are def ined by the UPnP

Forum w orking committee and ver shall contain the vers ion of the service type contained in the M-
SEA RCH request.

urn:domain-name:device:deviceType:ver

Respond once for each matching dev ice, root or embedded. shall be urn:domain-
name :device:deviceType :ver w here domain-name (a Vendor Domain Name) , deviceType and ver are

defined by the UPnP vendor and ver shall contain the vers ion of the dev ice type from the M-SEA RCH

request. Per iod characters in the Vendor Domain Name shall be replaced w ith hyphens in accordance
w ith RFC 2141.

urn:domain-name:service:serviceType:ver

Respond once for each matching serv ice type. shall be urn: domain-name :service:serviceType :ver
w here domain-name (a Vendor Domain Name) , serviceType and ver are defined by the UPnP vendor

and ver shall contain the vers ion of the service type from the M-SEA RCH reques t. Per iod charac ters
in the V endor Domain Name shall be replaced with hyphens in accordance with RFC 2141.

USN

Required. Field value contains Unique Serv ice Name. Identif ies a unique instance of a dev ice or serv ice. shall
be one of the follow ing. (See Table 1 1, “Root dev ice discovery messages” , Table 1 2, “Embedded dev ice
discovery messages” , and Table 1 3, “Serv ice discovery messages” above.) The pref ix (before the double
colon) shall match the value of the UDN element in the dev ice descr iption OR the low er ST version used in the
M-Search request. (Section 2, “Description” explains the UDN element.) Single URI.

uuid:device-UUID::upnp:rootdevice

Sent once for root dev ice w here device-UUID is spec if ied by UPnP vendor. See sec tion 1.1.4, “ UUID

f ormat and Recommended generation algorithms” for the MA NDATORY UUID f ormat.

uuid:device-UUID

Sent once for every device, root or embedded, w here dev ice-UUID is spec if ied by the UPnP vendor .

See section 1.1.4, “UUID f ormat and RECOMMENDED generation algor ithms” for the MA NDA TORY
UUID f ormat.

uuid:device-UUID::urn:schemas-upnp-org:device:deviceType:ver

Sent once for every device, root or embedded, w here dev ice-UUID is spec if ied by the UPnP vendor ,
dev iceType and ver are defined by UPnP Forum w orking committee and ver spec if ies version of the
dev ice type. See section 1.1.4, “UUID f ormat and RECOMMENDED generation algor ithms” for the
MA NDA TORY UUID f ormat.

uuid:device-UUID::urn:schemas-upnp-org:service:serviceType:ver

Sent once for every service w here dev ice-UUID is spec if ied by the UPnP vendor, serviceType and ver
are defined by UPnP Forum w orking committee and ver spec if ies vers ion of the dev ice type. See
sec tion 1.1.4, “UUID format and RECOMMENDED generation algor ithms” for the MA NDA TORY UUID
f ormat.

uuid:device-UUID::urn:domain-name:device:deviceType:ver

Sent once for every device, root or embedded, w here dev ice-UUID, domain-name (a Vendor Domain

Name), deviceType and ver are defined by the UPnP vendor and ver spec if ies the version of the
dev ice type. See section 1.1.4, “UUID f ormat and RECOMMENDED generation algor ithms” for the
MA NDA TORY UUID f ormat. Per iod charac ters in the Vendor Domain Name shall be replaced by
hyphens in accordance with RFC 2141.

uuid:device-UUID::urn:domain-name:service:serviceType:ver

Sent once for every service w here dev ice-UUID, domain-name (a Vendor Domain Name) , serv iceType
and ver are defined by the UPnP vendor and ver specif ies the vers ion of the serv ice type. See section

1.1.4, “UUID f ormat and recommended generation algor ithms” for the MA NDA TORY UUID f ormat.
Per iod charac ters in the Vendor Domain Name shall be replaced by hyphens in accordance w ith RFC
2141.

 — 42 —

© 2014 UPnP Forum. All Rights Reserved.

BOOTID.UPNP.ORG

Required. As defined in c lause 1.2, and 1.2.2.

CONFIGID.UPNP.ORG

A llow ed. As defined in clause 1.2, and 1.2.2.

SEARCHPORT.UPNP.ORG

A llow ed. As defined in clause 1.2, and 1.2.2.

SECURELOCATION.UPNP.ORG

A llow ed. As defined in clause 1.2.2.

If there is an error with the search request (such as an invalid field value in the MAN header
field, a miss ing MX header field, or other malformed content), the device shall si lently discard

and ignore the search request; sending of error responses is PROHIBITED due to the
poss ibi l ity of packet s torms if many devices send an error response to the same request .

1.4 Re fe rences

RFC 2141, URN Syntax. Available at : ht tp://www.ietf.org/ rfc/rfc2141.txt .

RFC 2616, HTTP: Hypertex t Transfer Protocol 1.1. Available at :

ht tp: / /www. iet f.org/rfc /rfc2616.tx t.

RFC 2774, HTTP Extens ion Framework. Available at : ht tp://www. iet f.org/rfc /rfc2774.txt.

RFC 3986, Uniform Resource Ident ifiers (URI): Generic Syntax. Available at :
ht tp: / /www. iet f.org/rfc /rfc3986.tx t.

RFC 4340, Datagram Congest ion Control Protocol (DCCP). Available at :
ht tp: / /www. iet f.org/rfc /rfc4340.tx t.

[1] DCE variant of Universal Unique Ident ifiers (UUIDs), The Open group, 1997, Available at :
ht tp: / /www.opengroup.org/onlinepubs/9629399/apdxa.htm .

2 Description

Descript ion is Step 2 in UPnP network ing. Descript ion comes after address ing (Step 0) where
devices get a network address, and after discovery (Step 1) where control points find

interest ing device(s). Descript ion enab les control (Step 3) where control points send
commands to device(s), eventing (Step 4) where control p oints l isten to state changes in
device(s), and presentat ion (Step 5) where control points may display an html user interface

for device(s).

After a control point has discovered a device, the control point sti ll knows very li ttle about the

device -- only the informat ion that was in the discovery message, i .e., the device's (or
service's) UPnP type, the device's universally -unique ident ifier, and a URL to the device's
UPnP description. For the control point to learn more about the device and its capabilit ies , or

to interact with the device, the control point shall ret rieve a descript ion of the device and its
capabil i t ies from the URL provided by the device in the discovery message.

Figure 2-1: — Description a rchite cture

http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2774.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4340.txt
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm

 — 43 —

© 2014 UPnP Forum. All Rights Reserved.

control point

root device

service

service

device

service

HTTP GET

HTTP RESP

description

service URL

HTTP GET

HTTP RESP

description

The UPnP descript ion for a device is part itioned into two logical parts: a device description
describing the physical and logical containers, and service descriptions describing the
capabil ities exposed by the device. A UPnP device descript ion includes vendor -specific

manufacturer information like the model name and number, serial number, manufacturer
name, URLs to vendor-specific Web s ites, etc . (details below). For each service included in
the device, the device descript ion lists the service type, service name, a URL for a service

description, a URL for control, and a URL for event ing. A device descript ion also includes a
description of al l embedded devices and a URL for presentat ion of the aggregate. This c lause
explains UPnP device descriptions, and the clauses on Control, Event ing, and Presentation

explain how URLs for control, event ing, and presentat ion are used respect ively .

Note that a s ingle physical device is al lowed to include multiple logical devices. Mult iple

logical devices can be modeled as a s ingle root device with embedded devices (and services)
or as multiple root devices (perhaps with no embedded devices). In the former case, there is
one UPnP device description for the root device, and that device descript ion contains a

description for al l embedded devices. In the latter case, there are mult iple UPnP device
descript ions, one for each root device.

A UPnP device description is written by a UPnP vendor. The descript ion is in XML syntax and
is usually based on a standard UPnP Device Template. A UPnP Device Template is produced
by a UPnP Forum working committee; they derive the template from the UPnP Device

Schema, which was derived from standard construc tions in XML. This clause explains the
format for a UPnP device description, UPnP Device Templates, and the part of the UPnP
Device Schema that covers devices.

A UPnP service descript ion includes a lis t of commands, or actions, to which the service
responds, and parameters, or arguments for each act ion. A service descript ion also inc ludes a

l ist of variables. These variables model the state of the service at run time, and are described
in terms of their data type, range, and event characterist ics . This c lause explains the
description of act ions, arguments , state variables, and the properties of those variables. The

c lause on Event ing explains event characteris tics.

Like a UPnP device description, a UPnP service description is written by a UPnP vendor. The

description is in XML syntax and is usually based on a stand ard UPnP Service Template. A
UPnP Service Template is produced by a UPnP Forum working committee; they derived the
template from the UPnP Service Schema, augmenting it with human language where

necessary. The UPnP Service Schema is derived using the conven t ions of XML Schema. This
c lause explains the format for a UPnP service description, UPnP Service Templates, typical
augmentations in human language, and the part of the UPnP Service Schema that covers

services.

 — 44 —

© 2014 UPnP Forum. All Rights Reserved.

UPnP vendors can differentiate their devices by extending services (see c lause 2.7, “Non-

standard vendor extens ions and l imitat ions ”), including additional UPnP services, or
embedding additional devices. When a control point ret r ieves a particular device's descript ion,
these added features are exposed to the control point for control and eventing. The device

and service descript ions authoritatively document the implementat ion of the device.

Retrieving a UPnP device descript ion is simple: the control point issues an HTTP GET

request on the URL in the discovery message, and the device returns the device descript ion.
Retrieving a UPnP service description is a s imilar process that uses a URL within the device
description. The protocol s tack, method, header fields , and body for the response and request

are explained in detail below. Descript ion documents shall be sent using the same IP address
on which the HTTP GET request was received.

As long as at least one of the discovery advert isements from a root device, any of its
embedded devices or any of i ts services have not expired and none of the advert isements
have been cancelled, a control point is al lowed to assume that the root device and all its

embedded devices and all i ts services are available. The device and service descriptions are
al lowed to be ret rieved at any point s ince the device and service descriptions are stat ic as
long as the device and its services are available. If a device cancels at least one of its

advert isements or i f all the advert isements expire, a control point should assume the device
and its services are no longer available. If a device needs to change one of these descript ions,
i t shall cancel i ts outstanding advert isements and re -advertise. Consequently, control points

should not assume that device and service descriptions are unchanged if a device re -appears
on the network , but they can detect whether descriptions changed if a changed
CONFIGID.UPNP.ORG field value is present in the announcements .

Like discovery , descript ion plays an important role in the interoperabil ity of devices and
control points using different vers ions of UPnP network ing. As explained in clause 1,

“Discovery ”, the UPnP Device Architecture is vers ioned with both a major and a minor vers ion.
The major vers ion and minor version are separate integer numbers; they are not to be
interpreted or compared as though they were a single decimal number, even though they are

allowed to appear as such in print. Advances in minor vers ions shall be a compat ible superset
of earlier minor vers ions of the same major vers ion; therefore device vendors are free to
implement standardized devices and services on vers ions of the arc hitec ture with a higher

minor vers ion number. Advances in major vers ion are not required to be supersets of earlier
vers ions and are not guaranteed to be backward compat ible. However UDA vers ion 2.0 is
spec ified as a superset of UDA 1.1 and is thus backwards compat ible with UDA 1.x vers ions.

Therefore UDA 2.0 control points shall maintain interoperabil ity with UDA 1.x devices. UDA
1.x control points can work with UDA 2.0 devices, but can’t access the addit ional funct ionality
spec ified in UDA 2.0. The architecture vers ion of a root device, all its embedded devices and

all its services shall be the same. Vers ion informat ion is communicated in description
messages as a backup to the informat ion communicated in discovery messages. This c lause
explains the format of vers ion informat ion in descript ion messages.

Device and service types standardized by UPnP Forum working committees or c reated by
vendors have an integer vers ion. Every later vers ion of a device or service shall be a ful ly

backwardly compat ible superset of the previous vers ion, i .e., compared to earlier versions of
the device, it shall inc lude all mandatory embedded devices and services of the same or later
vers ion. The UPnP device or service type remains the same across all vers ions of a device

whereas the device or service version shall be larger for later vers ions. Vers ions of device
and service templates are al lowed to have non-integer vers ions (such as “0.9”) during
development in the work ing committee, but this shall become an integer upon standard izat ion.

Devices and services are al lowed to have a vers ion number greater than the major vers ion
number of the architecture they are des igned for (e.g., “Power:2” is al lowed to be designed to
work on UDA version 1.0); there is no direct correlation betwee n the vers ion of a device or

service template and the architec ture version with which it is designed to work . If a non -
backward-compat ible vers ion of a device or service is defined, it shall have a different device
or service name to indicate that it is not backwardly compatible (and vers ion numbers of the

new type shall res tart at 1).

 — 45 —

© 2014 UPnP Forum. All Rights Reserved.

UPnP device and service types are “building blocks” that is al lowed to be assembled in

various combinat ions. Both standard and vendor -defined device types are allowed to be
embedded in standard device types. Both s tandard and vendor -defined device types are
allowed to be embedded in vendor-defined device types. Likewise, both standard and vendor -

defined service types are allowed be embedded in both s tandard and vendor -defined device
types. A control point that is capable of operating with a particular device or service type shall
at least recognize that device or service type even when it is embedded within another device

type (standard or vendor-defined) that it does not recognize. For example, i f a standard
service type “Print:1” is defined, and a s tandard device type “Printer:1” is defined that
contains the “Print :1” service, a control point that wishes to use the “Print:1” service shall find

and use it whether the service is embedded within a “urn:schemas -upnp-org:device:Printer:1”
device or embedded within a vendor-defined “urn:acme-com:device:Printer:1” or “urn:acme -
com:device:AcmeMult ifunct ionPrinter:1” device.

The remainder of this clause firs t explains how devices are described, explaining details of
vendor-spec ific information, embedded devices, and URLs for control, event ing, and

presentat ion. Second, it explains UPnP Device Templates. Third, it explains how services are
described, explaining details of act ions, arguments, state variables, and properties of those
variables. Then it explains UPnP Service Templates, and the UPnP Service Schema. Finally,

this clause explains in detail how a control point ret rieves device and service descript ions
from a device.

2.1 Generic requirements on HTTP usage

This subc lause defines generic requirements on HTTP usage in UPnP Version 2.0. HTTP is
the underly ing t ransport for:

 Descript ion (see c lause 2, “Description”)

 Control (see c lause 3, “Control”)

 Event ing (see c lause 4, “Event ing”)

 Presentat ion (c lause 5, “Presentation”)

The baseline t ransport for al l devices and control points is recommended to be HTTP/1.1

compliant (as defined in RFC 2616) but a t least shall be HTTP/1.0 compliant (as defined in
RFC 1945). Vendors are free to implement and Working Commit tees are free to require for
new device classes implementat ions of more recent vers ions of HTTP that are backwards

compatible with HTTP vers ion 1. 0, such as HTTP version 1.1 as defined in RFC 2616.
However whatever vers ion is implemented, al l required components defined by the specified
HTTP vers ion shall be implemented.

If a control point uses an HTTP/1.0 binding on a SOAP request without setting t he KeepAlive
token, the device shall c lose the socket after responding. If a control point uses an HTTP/1.1

binding on a SOAP request, and sets the “Connection:CLOSE” token, the device shall c lose
the socket after responding.

USER-AGENT header field

Control points can add the USER-AGENT header field to any UPnP-related HTTP request to

s ignal that they support UPnP 1.1. Working Committees are allowed to require presence of
this header on description ret rieval, ac tion invocations and event subscriptions for n ewly

defined services.

 USER-AGENT: OS/version UPnP/2.0 product/version

USER-AGENT

A llow ed.Spec if ied by UPnP vendor. Str ing. Field value shall begin w ith the follow ing “produc t tokens” (defined
by HTTP/1.1) . The f irs t product token identifes the operating system in the form OS name/OS vers ion , the

 — 46 —

© 2014 UPnP Forum. All Rights Reserved.

second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token identifes the product

us ing the form product name /product vers ion . For example, “USER-A GENT: unix/5.1 UPnP/2.0
MyProduct/1.0”.

Accept-Encoding header field

Control points can add the Accept -Encoding header field to any UPnP-related HTTP request

to s ignal that they support the type of encoding.

 Accept-Encoding: compress, gzip

Accept-Encoding

A llow ed.Spec if ied by RFC2616 sec tion 14.3. A llow ed encoding are identit iy, compress and gz ip. The identity

encoding shall be present and w ithout value q=0. When the request is satisf ied by the Server , then the
content-encoding header shall be present. The value of the content_encoding h eader spec if ies the used
encoding type of the response. Used values are vendor specif ic.

UPnP friendly Name header fie ld

Control points shall add the CPFN.UPNP.ORG header field to any UPnP-related HTTP

request to s ignal the friendly name of the control poi nt .

 CPFN.UPNP.ORG: friendly name

CPFN.UPNP.ORG

Required.Specif ies the fr iendly name of the control point. The fr iendly name is vendor spec if ic . When Dev ice

Protec tion is implemented the CPFN.UPNP.ORG shall be the same as the <Name> of Dev ice Protectio n unless
the Dev ice Protection <Alias> is defined, in which case it shall use the <A lias>.

UPnP identi fier header field

Control points can add the CPUUID.UPNP.ORG header field to any UPnP-related HTTP

request to s ignal the unique ident ifier of the control point .

 CPUUID.UPNP.ORG: uuid of control point

CPUUID.UPNP.ORG

A llow ed.uuid of the control point. When the control point is implemented in a UPnP dev ice it is recommended
to use the UDN of the co- located UPnP device. When implemented, all specif ied requirements for uuid usage

in dev ices also apply for control points .See section 1.1.4. Note that w hen Dev ice Protec tion is implemented
the CPUUID.UPNP.ORG shall be the same as the uuid used in Device Protection.

.

Vendor-defined or w orking committee-defined HTTP Header fields

HTTP field names defined by vendors or work ing commit tees shall have the fol lowing format:

field-name = token “. ” domain-name

where the domain-name shall be a Vendor Domain Name or shall be “UPNP.ORG” (for

work ing committee defined field names), and in addition shall satis fy the token format as
defined in RFC 2616 c lause 2.2. Field names are case-insensitive.

HTTP/1.0 Persistent connections

Some implementat ions of HTTP/1.0 defined what is known as persis tent connections. There

are many pract ical uses for this funct ionality, as it may reduce overhead for a given device by
allowing resources to be used more effic iently . However, this functionality for HTTP/1.0 is not

offic ial ly defined in the specificat ion and classified as experimental. Further, the way it has
been experimentally defined is flawed in such a way that it may cause sessions to hang in
certain scenarios . This functionality shall not be implemented by any UPnP devices or control

points that implement HTTP vers ion 1.0.

 — 47 —

© 2014 UPnP Forum. All Rights Reserved.

HTTP/1.0 HEAD request

Some implementat ions uti lize the HEAD request to t ry to predetermine the amount of memory

required to process a GET request. Some servers may not know that size of the content
because it may be dynamic. In such cas es, the responses will not contain a CONTENT-
LENGTH header field. As such, control points shall not rely on the CONTENT-LENGTH

header field being spec ified for a HEAD response.

HTTP/1.1 General

When a device or control point implements HTTP/1.1, all requir ements of HTTP/1.0 shall be

maintained, with the except ion of the CONTENT-LENGTH header field, which shall not be
spec ified when doing chunked t ransfers .

HTTP sta tus codes

Servers shall return appropriate HTTP status codes for invalid requests . A device or control

point shall use a 4xx HTTP status code for responses that indicate a problem with the format
of a request or response. For example, i f an HTTP c lient makes a PUT request to a server

that does not implement the PUT method, the server should return a "405 Method not
Allowed" HTTP s tatus code and shall return a 4xx series HTTP s tatus code. Another example
is i f an HTTP c lient makes a request to a server that is malformed HTTP or not well formed

XML, the server should return a "400 Bad Request" HTTP st atus code and shall return a 4xx
series HTTP status code. While cl ients are not required to understand specific status codes,
they shall understand c lasses of status codes. For example, a 4xx series HTTP status code

s ignifies an improper request, whereas a 5xx series HTTP s tatus code s ignifies a processing
error for a valid request .

HTTP/1.1 and HTTP/1.0 compatibi lity

Devices and control points that implement HTTP/1.1 shall be able to interoperate with

HTTP/1.0 control points and devices. Care shall be taken when devices and control points
process requests, such that the response generated is compatible with the HTTP vers ion

spec ified in the request. For example, i f an HTTP/1.0 request is made, the device or control
point shall not return an HTTP/1.1 chunked response.

HTTP/1.1 HOST header field and use of the HOST header field w ith HTTP/1.0

The ‘HOST’ header field shall be specified in al l requests, because HTTP/1.1 allows support

for virtual domains, which rely on this header field to determine the target de st ination.

The HOST header field shall also be included in HTTP/1.0 requests , for backwards
compatibil ity with UPnP 1.0, which REQUIRES the HOST header field to be present without
explic itly ment ioning a HTTP vers ion.

HTTP/1.1 EXPECT: 100-Continue

Servers are allowed to send a “100-Cont inue” HTTP status code to let the cl ient know that the

header fields received have been processed. If a cl ient wil l rely on this status response before

sending the body, i t shall send the “EXPECT: 100-Continue” header field in the request. If a
server received this header field in the request, it shall not wait for the request body before
sending the continue response. However, a c lient shall be prepared to handle cases when the

“EXPECT: 100-Cont inue” header field is not sent , but a “100-Cont inue” HTTP status code is
st i l l received from the server.

HTTP/1.1 Chunked Encoding

Devices and control points that advert ise support for HTTP/1.1 shall have support for

decoding chunked encoded messages. Chunked encoded messages are allowed to contain
Chunk-Extens ions, which are delineated with a ‘;’. Extensions that are not recognized shall be

ignored, which inc ludes the absence of an extens ion, but the presence of the delineator.

Chunked encoding also allows responses and requests to incl ude t rai ler fields, which are

header fields that fol low the body. Devices and control points shall only send t rai ler fields if

 — 48 —

© 2014 UPnP Forum. All Rights Reserved.

the request contained the ‘TE’ header field (indicates t rai ler process ing is supported), or i f the

t rai ler fields in the response only contain al lowed metadata that can be safely ignored.

Before a control point uses chunked encoding to make a request to a device, it shall check to

ensure that the device is an HTTP/1.1 device. Devices are allowed to use different HTTP
engines (that support different vers ions) for description, control, event ing and presentat ion.
Therefore, to correct ly identify which HTTP vers ion is used for processing control requests, a

HEAD request is al lowed to be issued to the corresponding control URL.

HTTP/1.1 Persistent Connections

Persis tent connect ions is the default behavior defined by HTTP/1.1. It is st rongly

recommended that this behavior be maintained, as it may be beneficial in many scenarios, as
it allows for resources to be ut ilized more effic iently. Su pport for Pipelined request handling is
also recommended if pers is tent connections are supported.

If a server responds with a “CONNECTION: close” header l ine, it shall close the session after
responding. Similarly i f a c lient spec ifies “CONNECTION: close” in the request, the server

shall also c lose the session after responding.

When Requests are pipelined to a server, the server shall answer the requests in the order

that they are received. Clients shall also be prepared to ret ry connect ions if pipelining fai ls,
for example, i f the server does not support them.

HTTP/1.1 Redirect restrictions

HTTP/1.1 defines allowed support for redirect ing an HTTP request . UPnP 2.0 devices are

al lowed to redirect a request, although this is not recommended. If a UPnP 2.0 device
redirects a request, it shall respond with a “307 Temporary Redirect” HTTP status code (see

also RFC 2616). UPnP 2.0 devices shall not return any other HTTP/1.1 redirec t opt ions.
Control points shall implement HTTP/1.1 redirect and should redirect the request upon
receiving a “307 Temporary Redirec t” HTTP s tatus code (see also RFC 2616).

2.2 Generic requirements on XML usage

XML namespace prefixes do not have to be the specific st rings that are used in the examples
in this spec ificat ion. They can be any value that obeys the rules of the general XML

namespace mechanism as out lined in the Namespaces in XML specificat ion. Devices shall
accept requests that use other legal XML namespace prefixes.

If an XML element has no value (i.e. i t contains the empty s t ring), i t is valid to combine the
opening and closing XML tags (e.g. , “<actionname/> ” instead of

“<actionname></actionname>”).

2.3 Device description

The UPnP description for a device contains several pieces of vendor -spec ific informat ion,

definit ions of all embedded devices, URL for presentation of the device, and listings for all
services, inc luding URLs for control and event ing. In addit ion to defining non -standard
devices (which is allowed to contain both vendor-defined and standard embedded devices and

services), UPnP vendors are allowed to add embedded devices and services to standard
devices. To il lust rate these, below is a listing with placeholders (in italics) for ac tual elements
and values. Some of these placeholders would be specified by a UPnP Forum work ing
committee (colored red) or by a UPnP vendor (colored purple). For a non-s tandard device, all

of these placeholders would be specified by a UPnP vendor. Elements defined by the UPnP
Device Architecture are colored green. Immediately following the listing is a detailed

explanat ion of the elements , at tributes, and values.

 <?xml version="1.0"?>

 <root xmlns="urn:schemas-upnp-org:device-1-0"
 configId="configuration number">

 <specVersion>

 — 49 —

© 2014 UPnP Forum. All Rights Reserved.

 <major>2</major>

 <minor>0</minor>

 </specVersion>
 <device>
 <deviceType>urn:schemas-upnp-org:device:deviceType:v</deviceType>
 <friendlyName>short user-friendly title</friendlyName>
 <manufacturer>manufacturer name</manufacturer>

 <manufacturerURL>URL to manufacturer site</manufacturerURL>
 <modelDescription>long user-friendly title</modelDescription>
 <modelName>model name</modelName>
 <modelNumber>model number</modelNumber>

 <modelURL>URL to model site</modelURL>
 <serialNumber>manufacturer's serial number</serialNumber>
 <UDN>uuid:UUID</UDN>

 <UPC>Universal Product Code</UPC>

 <iconList>
 <icon>
 <mimetype>image/format</mimetype>
 <width>horizontal pixels</width>
 <height>vertical pixels</height>

 <depth>color depth</depth>
 <url>URL to icon</url>

 </icon>
 <!-- XML to declare other icons, if any, go here -->

 </iconList>
 <serviceList>

 <service>
 <serviceType>urn:schemas-upnp-org:service:serviceType:v</serviceType>
 <serviceId>urn:upnp-org:serviceId:serviceID</serviceId>

 <SCPDURL>URL to service description</SCPDURL>
 <controlURL>URL for control</controlURL>
 <eventSubURL>URL for eventing</eventSubURL>

 </service>
 <!-- Declarations for other services defined by a UPnP Forum working committee
 (if any) go here -->

 <!-- Declarations for other services added by UPnP vendor (if any) go here -->

 </serviceList>
 <deviceList>

 <!-- Description of embedded devices defined by a UPnP Forum working committee
 (if any) go here -->
 <!-- Description of embedded devices added by UPnP vendor (if any) go here -->

 </deviceList>
 <presentationURL>URL for presentation</presentationURL>

 </device>
 </root>

Listed below are details for each of the elements, att ributes, and values appearing in the
l ist ing above. A ll elements and att ributes are case sensitive; HTTP specifies case sensit ivity
for URLs; other values are not case sens it ive except where noted. The order of elements is

s ignificant. Except where noted: required elements shall occur exact ly once (no duplic ates),
and recommended or al lowed elements are allowed to occur at most once. Note that some
implementations are al lowed to st rictly enforce the length l imits for various elements noted

below, and therefore work ing commit tees are advised to heed all l imits specified.

<?xml>

Required for all XML documents. Case sensitive.

<root>

Required. Shall have “urn:schemas-upnp-org:device-1-0” as the value for the xmlns attr ibute; this references

the UPnP Dev ice Schema (described below). Case sensit ive. Has the followi ng attribute:

configId

Required. Spec if ies the configuration number to w hich the dev ice description belongs. See clause 1,
“Discovery” for further definition and usage of the configuration number.

Contains all other elements describing the root device, i.e., contains the following child elements:

 — 50 —

© 2014 UPnP Forum. All Rights Reserved.

<specVersion>

Required. In dev ice templates , defines the low est vers ion of the architec ture on w hich the dev ice can
be implemented. In ac tual UPnP devices, def ines the architecture on w hich the device is implemented.
Contains the following sub elements:

<major>

Required. Major vers ion of the UPnP Dev ice Architec ture. Shall be 2 for dev ices implemented
on a UPnP 2.0 architecture.

<minor>

Required. Minor vers ion of the UPnP Dev ice Architec ture. Shall be 0 for dev ices implemented
on a UPnP 2.0 architecture. Shall accurately reflect the version number of the UPnP Dev ice
A rchitecture supported by the device.

<URLBase>

Use of URLBase is deprecated from UPnP 1.1 onw ards ; UPnP 2.0 dev ices shall NOT inc lude
URLBase in their description documents. For full def init ion of URLBase, see the UPnP 1.0
spec if ication.

<device>

Required. Contains the following sub elements:

<deviceType>

Required. UPnP dev ice type. Single URI.

 For standard dev ices def ined by a UPnP Forum w orking committee, shall begin w ith
“urn:schemas-upnp-org:device:” follow ed by the s tandardized dev ice type suff ix , a colon,
and an integer dev ice vers ion i.e. urn:schemas-upnp-org:device:deviceType :ver. The
highes t supported version of the device type shall be specif ied.

 For non-standard dev ices spec if ied by UPnP vendors , shall begin w ith “urn:” , follow ed by
a Vendor Domain Name, follow ed by “ :device:” , follow ed by a device type suff ix , colon,

and an integer vers ion, i.e., “urn:domain-name :device:deviceType:ver” . Per iod

charac ters in the V endor Domain Name shall be replaced w ith hyphens in accordance
w ith RFC 2141. The highest supported version of the device type shall be specif ied.

The dev ice type suf f ix defined by a UPnP Forum w orking committee or specif ied by a UPnP
vendor shall be <= 64 chars, not counting the version suffix and separating colon.

<friendlyName>

Required. Shor t descr iption for end user. Is allow ed to be localized (see A CCEPT-
LA NGUA GE and CONTENT-LA NGUA GE header f ields) . Specif ied by UPnP vendor . Str ing.
Should be < 64 characters.

<manufacturer>

Required. Manufac turer's name. Is allow ed to be localized (see A CCEPT-LA NGUA GE and
CONTENT-LA NGUAGE header f ields). Specif ied by UPnP vendor . Str ing. Should be < 64
characters.

<manufacturerURL>

A llow ed. Web site for Manufacturer . Is allow ed to have a different value depending on

language requested (see A CCEPT-LA NGUA GE and CONTENT-LA NGUAGE header f ields) .
Spec if ied by UPnP vendor. Single URL.

<modelDescription>

Recommended. Long descr iption for end user. Is allow ed to be localized (see A CCEPT-

LA NGUA GE and CONTENT-LA NGUA GE header f ields) . Specif ied by UPnP vendor . Str ing.
Should be < 128 characters.

<modelName>

Required. Model name. Is allow ed to be localized (see A CCEPT-LA NGUAGE and CONTENT-
LA NGUA GE header fields). Specif ied by UPnP vendor . String. Should be < 32 characters.

<modelNumber>

Recommended. Model number. Is allow ed to be localized (see A CCEPT-LA NGUAGE and
CONTENT-LA NGUAGE header f ields). Specif ied by UPnP vendor . Str ing. Should be < 32
characters.

 — 51 —

© 2014 UPnP Forum. All Rights Reserved.

<modelURL>

A llow ed. Web s ite for model. Is allow ed to have a different value depending on language

requested (see A CCEPT-LA NGUA GE and CONTENT-LA NGUAGE header f ields). Spec if ied
by UPnP vendor. Single URL.

<serialNumber>

Recommended. Ser ial number. Is allow ed to be localized (see A CCEPT-LA NGUAGE and

CONTENT-LA NGUAGE header f ields). Specif ied by UPnP vendor . Str ing. Should be < 64
characters.

<UDN>

Required. Unique Dev ice Name. Universally-unique identif ier for the device, w hether root or

embedded. shall be the same over t ime for a spec if ic dev ice ins tance (i.e., shall surv ive
reboots) . shall match the f ield value of the NT header f ield in dev ice discovery messages .
shall match the prefix of the USN header f ield in all discovery messages . (Clause 1,

“Discovery” explains the NT and USN header f ields .) shall begin w ith “uuid:” follow ed by a
UUID suff ix spec if ied by a UPnP vendor. See clause 1.1.4 , “UUID f ormat and recommended
generation algorithms” for the MA NDATORY UUID f ormat.

<UPC>

A llow ed. Universal Product Code. 12-digit, all-numer ic code that identif ies the consumer
package. Managed by the Uniform Code Council. Specif ied by UPnP vendor. Single UPC.

<iconList>

Required if and only if dev ice has one or more icons. Spec if ied by UPnP vendor . Contains the
f ollowing sub elements:

<icon>

Recommended. Icon to depict dev ice in a control point UI. Is allow ed to have a
different value depending on language requested (see A CCEPT-LA NGUA GE and

CONTENT-LA NGUAGE header f ields). Icon sizes to suppor t are vendor -specif ic.
Contains the following sub elements:

<mimetype>

Required. Icon's MIME type (see RFC 2045, 2046, and 2387) . Single MIME image
type. At least one icon should be of type “ image/png” (Por table Netw ork Graphics,
see IETF RFC 2083) .

<w idth>

Required. Horizontal dimension of icon in pixe ls. Integer.

<height>

Required. Vertical dimension of icon in pixels. Integer.

<depth>

Required. Number of color bits per pixel. Integer.

<url>

Required. Pointer to icon image. (XML does not support direct embedding of binary
data. See note below .) Retr iev ed v ia HTTP. Shall be relative to the URL at w hich the

dev ice descr iption is located in accordance w ith clause 5 of RFC 3986. Spec if ied by
UPnP vendor. Single URL.

<serviceList>

A llow ed. Contains the following sub elements:

<service>

A llow ed. Repeated once for each serv ice defined by a UPnP Forum w orking
committee. If UPnP vendor differentiates device by adding addit ional, standard UPnP

serv ices, repeated once for each addit ional serv ice. Contains the follow ing sub
elements :

<serviceType>

Required. UPnP serv ice type. Shall not contain a hash character (#, 23 Hex
in UTF-8) . Single URI.

 — 52 —

© 2014 UPnP Forum. All Rights Reserved.

 For s tandard serv ice types defined by a UPnP Forum w orking
committee, shall begin w ith “urn:schemas-upnp-org:service:” follow ed

by the s tandardized serv ice type suff ix, colon, and an integer serv ice
vers ion i.e. urn:schemas-upnp-org:device:serviceType:ver . The highest
supported version of the service type shall be specif ied.

 For non-s tandard service types spec if ied by UPnP vendors, shall begin
w ith “urn:”, follow ed by a Vendor Domain Name, follow ed by “ :service:”,

follow ed by a serv ice type suff ix, colon, and an integer serv ice vers ion,
i.e., “urn:domain-name :service:serviceType :ver”. Per iod charac ters in

the Vendor Domain Name shall be replaced w ith hyphens in accordance

w ith RFC 2141. The highest suppor ted vers ion of the serv ice type shall
be specif ied.

The serv ice type suff ix def ined by a UPnP Forum w orking committee or
spec if ied by a UPnP vendor shall be <= 64 characters, not counting the
version suff ix and separating colon.

<serviceId>

Required. Serv ice identif ier . Shall be unique w ithin this dev ice description.
Single URI.

 For s tandard serv ices def ined by a UPnP Forum w orking committee,
shall begin w ith “urn:upnp-org:serviceId:” follow ed by a serv ice ID
suff ix i.e. urn:upnp-org:serviceId:serviceID. If this instance of the

spec if ied serv ice type (i.e. the <serviceType> element above)
cor responds to one of the services def ined by the spec if ied dev ice type

(i.e. the <deviceType> element above), then the value of the serv ice
ID suff ix shall be the serv ice ID defined by the dev ice type for this

ins tance of the serv ice. Otherw ise, the value of the serv ice ID suff ix is
vendor defined. (Note that upnp-org is used instead of schemas-upnp-
org in this case because an XML schema is not defined for each serv ice

ID.)

 For non-s tandard serv ices spec if ied by UPnP vendors , shall begin w ith
“urn:”, follow ed by a Vendor Domain Name, follow ed by “: serviceId:”,
follow ed by a serv ice ID suff ix , i.e., “urn:domain-
name :serviceId:serviceID”. If this instance of the spec if ied serv ice type

(i.e. the <serviceType> element above) corresponds to one of the

serv ices def ined by the spec if ied dev ice type (i.e. the <deviceType>
element above), then the value of the serv ice ID suff ix shall be the
serv ice ID def ined by the dev ice type for this instance of the service.

Per iod characters in the V endor Domain Name shall be replaced w ith
hyphens in accordance with RFC 2141.

The serv ice ID suff ix def ined by a UPnP Forum w orking committee or
spec if ied by a UPnP vendor shall be <= 64 characters.

<SCPDURL>

Required. URL for serv ice description. (See c lause 2.5, “Servic e

descr iption” below .) shall be relative to the URL at w hich the devic e
descr iption is located in accordance w ith c lause 5 of RFC 3986. Specif ied
by UPnP vendor. Single URL.

<controlURL>

Required. URL for control (see c lause 3, “Control”) . shall be relative to the
URL at w hich the dev ice description is located in accordance w ith c lause 5
of RFC 3986. Specif ied by UPnP vendor. Single URL.

<eventSubURL>

Required. URL for eventing (see c lause 4, “Eventing”). shall be relative to
the URL at w hich the dev ice descr iption is located in accordance w ith
c lause 5 of RFC 3986. shall be unique w ithin the dev ice; any tw o serv ices
shall not have the same URL for eventing. If the serv ice has no evented

var iables, this element shall be present but shall be empty (i.e.,

<eventSubURL></eventSubURL>.) Spec if ied by UPnP vendor. Single
URL.

<deviceList>

Required if and only if root dev ice has embedded dev ices . Contains the foll ow ing sub
elements :

 — 53 —

© 2014 UPnP Forum. All Rights Reserved.

<device>

Required. Repeat once for each embedded dev ice defined by a UPnP Forum w orking
committee. If UPnP vendor differentiates dev ice by embedding addit ional UPnP

dev ices, repeat once for each embedded device. Contains sub elements as def ined
above for root sub element device.

<presentationURL>

Recommended. URL to presentation for dev ice (see c lause 5, “Presentation”) . shall be

relative to the URL at w hich the device description is located in accordance w ith the rules
spec if ied in clause 5 of RFC 3986. Specif ied by UPnP vendor . Single URL.

Control points should recognize and interoperate with services using serviceId values other
than the value defined by the device type. If multiple ins tances of a service ex ist, control
points should by default (unless directed otherwise by user ac tion) use the service instance

associated with the serviceId value defined by the device type. If none of the instances of the
service have the serviceId value defined by the device type, the control point may use any
service ins tance. When only one instance of the service ex ists , control points should use that

ins tance even if the serviceId value does not match that defined by the device type.

For future extens ibi lity and according to the requirements in clause 2.7, “Non-standard vendor

extensions ” and clause 2.8, “UPnP Device Schema”, when processing XML like the lis ting
above, devices and control points shall ignore: (a) any unknown elements and their sub
elements or content , and (b) any unknown at t ribut es and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions ” and c lause
2.8, “UPnP Device Schema”, control points and devices shall ignore any XML comments or

XML process ing ins t ruct ions embedded in UPnP device and service descriptions that they do
not unders tand. UPnP device descript ions shall be encoded us ing UTF-8.

When the value of any tex t element or att ribute contains one or more characters reserved as
markup (such as ampersand (“&”) or less than (“<”)), the text shall be escaped in accordance
with the provisions of clause 2.4 of the XML specificat ion and each such character replaced

with the equivalent numeric representat ion or s t ring (such as “&” or “< ”). Such
characters appearing in URLs are allowed to also be percent -encoded in accordance with the
URL percent -encoding rules spec ified in c lauses 2.1 and 2.4 of RFC 3986.

XML does not support directly embedding binary data, e.g., icons in UPnP device descript ions.
Binary data are al lowed to be converted into tex t (and thereby embedded into XML) using an

XML data type of either bin.base64 (a MIME-sty le base 64 encoding for binary data) or
bin.hex (hexadec imal digits represent octets). Alternatively, the data can be passed indirect ly,
as it were, by embedding a URL in the XML and t ransferring the data in response to a

separate HTTP request; the icon(s) in UPnP device descript ions are t ransferred in this latter
manner.

If any icons are inc luded, at least one should be in the Portable Network Graphics (PNG)
format defined in RFC 2083, indicated by the MIME type “image/png”, and not use
progress ive encoding. No specific icon sizes are recommended due to the wide variety

preferred by various control points; control point vendors are encouraged to publish
implementat ion guidelines.

The use of URLBase element is deprecated by this specification. UPnP 2.0 devices shall not
include URLBase in their description documents. To ensure interoperabili ty with UPnP 1.0
devices, control points shall be able to process URLBase if it is specified and use it for

resolving relat ive URLs that appear elsewhere in the descript ion. If relative URLs are included
in the device description, control points shall resolve them into absolute URLs in accordance
with clause 5 of RFC 3986, using either URLBase (if spec ified) or the location from which the

device description was ret rieved as the base URL, before us ing these URLs for their
respect ive purposes.

Note that in vers ion 1.0 of the UPnP Device Architecture, the serviceList element was
required, and it was required to contain at least one service element. These requirements

 — 54 —

© 2014 UPnP Forum. All Rights Reserved.

were subsequent ly resc inded to accommodate the InternetGatewayDevice:1 and Bas ic:1

device types. If the device has no services, the serviceList element is allowed to be omitted
ent irely , or i t is al lowed to be present but contain no service elements.

2.4 UPnP Device Template

The l isting above also i llus t rates the relationship between a UPnP device description and a
UPnP Device Template. As explained above, the UPnP device descript ion is written by a
UPnP vendor, in XML, following a UPnP Device Template. A UPnP Device Template is

produced by a UPnP Forum work ing commit tee as a means to s tandardize devices.

By appropriate specificat ion of placeholders, the listing above can be either a UPnP Device

Template or a UPnP device description. Recall that some place holders would be defined by a
UPnP Forum working committee (colored red), i.e. , the UPnP device type identifier, required

UPnP services, and required UPnP embedded devices (if any). If these were defined, the

l ist ing would be a UPnP Device Template, codify ing the standard for this type of device. UPnP
Device Templates are one of the key deliverables from UPnP Forum work ing commit tees.

Tak ing this another step further, the remaining placeholders in the listing above would be
spec ified by a UPnP vendor (colored purple), i .e., vendor-specific informat ion. If these

placeholders were specified (as well as the others), the lis ting would be a UPnP device

description, suitable to be delivered to a control point to enable control, eventing, and
presentat ion.

Put another way, the UPnP Device Template defines the overall type of device, and each
UPnP device descript ion instant iates that template with vendor -specific information. The first
is c reated by a UPnP Forum work ing commit tee; the lat ter, by a UPnP vendor.

2.5 Service description

The UPnP descript ion for a service defines act ions and their arguments, and state variables
and their data type, range, and event characteristics.

Each service shall have zero or more act ions. Each act ion shall have zero or more arguments.
Each argument is des ignated as either an input or an output argument. Input arguments shall

be listed first. If an act ion has one or more output arguments, the first output argument is
al lowed to be marked as a return value. Each argument shall correspond to one of the
<stateVariable> elements in the <serviceStateTable> in the SCPD.

Each service shall have one or more s tate variables .

In addit ion to defining non-standard services, UPnP vendors are al lowed to add act ions and
services to standard devices, and are allowed to embed standard services and devices in
non-s tandard devices.

To i l lust rate these points, below is a lis ting with placeholders (in italics) for actual elements
and values. For a s tandard UPnP service, some of these placeholders would be define d by a
UPnP Forum work ing committee (colored red) or spec ified by a UPnP vendor (purple). For a

non-standard service, al l of these placeholders would be spec ified by a UPnP vendor.
Elements defined by the UPnP Device Architecture are colored green. Immediately fol lowing

the l is t ing is a detailed explanat ion of the elements , at tributes, and values.

 <?xml version="1.0"?>

 <scpd

 xmlns="urn:schemas-upnp-org:service-1-0"
 xmlns:dt1="urn:domain-name:more-datatypes"

 <!-- Declarations for other namespaces added by UPnP Forum working committee (if any) go

 here -->

 <!-- The value of the attribute shall remain as defined by the UPnP Forum working

committee.

 -->

 xmlns:dt2="urn:domain-name:vendor-datatypes"

 <!-- Declarations for other namespaces added by UPnP vendor (if any) go here -->

 — 55 —

© 2014 UPnP Forum. All Rights Reserved.

 <!-- Vendors shall change the URN’s domain-name to a Vendor Domain Name -->

 <!-- Vendors shall change vendor-datatypes to reference a vendor-defined namespace -->

 configId="configuration number">

 <specVersion>

 <major>2</major>
 <minor>0</minor>
 </specVersion>

 <actionList>
 <action>
 <name>actionName</name>

 <argumentList>

 <argument>
 <name>argumentNameIn1</name>

 <direction>in</direction>

 <relatedStateVariable>stateVariableName</relatedStateVariable>

 </argument>
 <!-- Declarations for other IN arguments defined by UPnP Forum working

 Committee (if any) go here -->

 <argument>
 <name>argumentNameOut1</name>

 <direction>out</direction>
 <retval/>
 <relatedStateVariable>stateVariableName</relatedStateVariable>

 </argument>
 <argument>
 <name>argumentNameOut2</name>

 <direction>out</direction>
 <relatedStateVariable>stateVariableName</relatedStateVariable>

 </argument>
 <!-- Declarations for other OUT arguments defined by UPnP Forum working
 committee (if any) go here -->

 </argumentList>

 </action>
 <!-- Declarations for other actions defined by UPnP Forum working committee
 (if any)go here -->

 <!-- Declarations for other actions added by UPnP vendor (if any) go here -->

 </actionList>
 <serviceStateTable>

 <stateVariable sendEvents="yes"|"no" multicast="yes"|"no">
 <name>variableName</name>

 <dataType>basic data type</dataType>
 <defaultValue>default value</defaultValue>

 <allowedValueRange>
 <minimum>minimum value</minimum>
 <maximum>maximum value</maximum>

 <step>increment value</step>

 </allowedValueRange>
 </stateVariable>

 <stateVariable sendEvents="yes"|"no" multicast="yes"|"no">
 <name>variableName</name>

 <dataType type="dt1:variable data type">string</dataType>

 <defaultValue>default value</defaultValue>

 <allowedValueList>
 <allowedValue>enumerated value</allowedValue>

 <!-- Other allowed values defined by UPnP Forum working committee
 (if any) go here -->
 <!-- Other allowed values defined by vendor (if any) go here -->

 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="yes"|"no" multicast="yes"|"no">
 <name>variableName</name>
 <dataType type="dt2:vendor data type">string</dataType>

 <defaultValue>default value</defaultValue>

 </stateVariable>
 <!-- Declarations for other state variables defined by UPnP Forum working committee
 (if any) go here -->

 <!-- Declarations for other state variables added by UPnP vendor (if any) go here -

->
 </serviceStateTable>

 </scpd>

Listed below are details for each of the elements, att ributes, and values appearing in the
l ist ing above. All elements and att ributes (including action, argument, and state variable

 — 56 —

© 2014 UPnP Forum. All Rights Reserved.

names) are case sens it ive; values are not case sensit ive except where noted. Except where

noted, required elements shall occur exactly once (no duplicates), and recommended or
Allowed elements are al lowed to occur at most once.

<?xml>

Required for all XML documents. Case sensitive.

<scpd>

Required. Shall have “urn:schemas-upnp-org:service-1-0” as the value for the xmlns attr ibute; this references
the UPnP Serv ice Schema (explained below). Case sensitive. Has the following attribute:

configId

Required. Spec if ies the configuration number to w hich the service description belongs. See c lause 1,
“Discovery” for further definition and usage of the configuration number.

Contains all other elements describing the service, i.e., contains the following sub elements:

<specVersion>

Required. In service templates , def ines the low est version of the architecture on w hich the serv ice can
be implemented. In actual UPnP serv ices, defines the architecture on w hich the serv ice is
implemented. Contains the following sub elements:

<major>

Required. Major vers ion of the UPnP Dev ice Architec ture. Shall be 2 for services
implemented on a UPnP 2.0 architecture.

<minor>

Required. Minor vers ion of the UPnP Dev ice Architec ture. Shall be 0 for services

implemented on a UPnP 2.0 architec ture. Shall accurately reflect the vers ion number of the
UPnP Dev ice Architecture suppor ted by the device.

<actionList>

Required if and only if the serv ice has actions. (Each serv ice is allow ed to have >= 0 ac tions .)
Contains the following sub element(s):

<action>

Required. Repeat once for each action defined by a UPnP Forum w orking committee. If UPnP
vendor differentiates serv ice by adding addit ional ac tions , repeat once for each addit ional
ac tion. Contains the following sub elements:

<name>

Required. Name of action. Shall not contain a hyphen charac ter (“-” , 2D Hex in UTF-
8) nor a hash charac ter (“#”, 23 Hex in UTF-8). Case sensit ive. First character shall
be a USA SCII letter (“A”-“Z” , “a”-“z”) , USASCII digit (“0”- “9”) , an underscore (“_”) , or

a non-exper imental Unicode letter or digit greater than U+007F. Succeeding
charac ters Shall be a USA SCII lette r (“A”-“Z” , “a”-“z”) , USA SCII digit (“0”-“9”) , an
underscore (“_”) , a per iod (“.”) , a Unicode combiningchar , an ex tender, or a non-
exper imental Unicode letter or digit greater than U+007F. The f irst three letters shall
not be “XML” in any combination of case.

 For standard actions def ined by a UPnP Forum w orking committee, Shall not
begin w ith “X_” nor “A_”.

 For non-standard ac tions specif ied by a UPnP vendor and added to a standard
serv ice, shall begin w ith “X_”, follow ed by a Vendor Domain Name, follow ed by

the underscore character (“_”), follow ed by the vendor -ass igned ac tion name.
The vendor-ass igned action name shall comply w ith the syntax rules defined
above.

Str ing. Should be < 32 characters.

<argumentList>

Required if and only if parameters are defined for ac tion. (Each action is allow ed to
have >= 0 parameters.) Contains the following sub element(s):

 — 57 —

© 2014 UPnP Forum. All Rights Reserved.

<argument>

Required. Repeat once for each parameter. UPnP vendors shall not add
vendor-defined arguments to actions defined by a UPnP Forum w orking
committees. Contains the following sub elements:

<name>

Required. Name of formal parameter. The name should be chosen
to ref lec t the semantic use of the argument. shall not contain a

hyphen character (“-” , 2D Hex in UTF-8) . First character shall be a
USASCII le tter (“A”-“Z” , “a”-“z”), USASCII digit (“0”-“9”), an
underscore (“_”) , or a non-exper imental Unicode letter or digit
greater than U+007F. Succeeding characters shall be a USASCII

letter (“A”-“Z” , “a”-“z”), USASCII digit (“0” -“9”) , an underscore (“_”),
a period (“.”) , a Unicode combiningchar, an extender , or a non-
exper imental Unicode letter or digit greater than U+007F. The f irst
three letters shall not be “XML” in any combination of case. Str ing.
Case sensit ive. Should be < 32 characters.

<direction>

Required. Defines w hether argument is an input or output

parameter . shall be either “ in” or “out” and not both. All input
arguments shall be listed before any output arguments.

<retval>

A llow ed. Identif ies at most one output argument as the return value.
If inc luded, shall be included as a subelement of the f irst output
argument. (Element only; no value.)

<relatedStateVariable>

Required. shall be the name of a s tate var iable. Case Sens it ive.
Def ines the type of the argument; see fur ther explanation below in
this c lause.

<serviceStateTable>

Required. (Each service shall have => 1 state variables.) Contains the following sub element(s):

<stateVariable>

Required. Repeat once for each s tate var iable defined by a UPnP Forum w orking committee.
If UPnP vendor differentiates serv ice by adding addit ional state var iables , repeat once for
each addit ional state variable. Has the following attributes:

sendEvents

A llow ed. Defines w hether event messages w ill be generated w hen the value of this
state var iable changes. Default value is “yes”. Non-evented state var iables shall set

this attribute to “no”.

 For s tandard state var iables def ined by a UPnP Forum w orking committee, the

w orking committee dec ides w hether the variable is evented and the value of the
sendEvents attribute shall not be altered by a vendor.

 For non-s tandard s tate var iables spec if ied by a UPnP vendor and added to a

standard service, the vendor is allow ed to dec ide w hether the non-standard
s tate variable will be evented or not.

multicast

A llow ed. Defines w hether event messages w ill be delivered us ing mult icast eventing.
Def ault value is “no”. If the mult icas t is set to “yes”, then all events sent for this s tate
var iable shall be unicast AND multicast.

 For s tandard state var iables def ined by a UPnP Forum w orking commi ttee, the

w orking committee dec ides w hether the state var iable is mult icas t and the value
of the multicast attribute shall not be altered by a vendor.

 For non-standard variables spec if ied by a UPnP vendor and added to a standard

serv ice, the vendor is allow ed to decide w hether the non-standard var iable w ill
be delivered using mult icast eventing.

The <stateVariable> element contains the following sub elements:

 — 58 —

© 2014 UPnP Forum. All Rights Reserved.

<name>

Required. Name of state var iable. Shall not contain a hyphen character (“-” , 2D Hex
in UTF-8). First charac ter shall be a USA SCII letter (“A”-“Z” , “a”-“z”), USASCII digit

(“0”-“9”), an underscore (“_”), or a non -exper imental Unicode letter or digit greater
than U+007F. Succeeding characters shall be a USASCII letter (“A”-“Z” , “a”-“z”),
USASCII digit (“0”-“9”), an underscore (“_”), a per iod (“ .”), a Unicode combiningchar,
an ex tender, or a non-exper imental Unicode letter or digit greater than U+007F. The
f irst three letters shall not be “XML” in any combination of case. Case sensit ive.

 For standard s tate var iables def ined by a UPnP Forum w orking committee, shall
not begin with “X_” nor “A_”.

 For non-s tandard s tate var iables spec if ied by a UPnP vendor and added to a
standard serv ice, shall begin w ith “X_”, follow ed by a V endor Domain Name,

follow ed by the underscore character (“_”) , follow ed by the vendor -ass igned
state var iable name. The vendor-ass igned state var iable name shall comply w ith
the syntax rules defined above.

Str ing. Should be < 32 characters.

<dataType>

Required. Same as data types def ined by XML Schema, Part 2: Datatypes. Def ined
by a UPnP Forum w orking committee for s tandard state variables; specif ied by UPnP
vendor for extensions. Has an allowed type attribute:

type

A llow ed. If the type attr ibute is present, the value of the <dataType>

element shall be “s tr ing”. The value of the type attr ibute overr ides the
“string” value; it def ines the data type us ing a fully qualif ied data type name
according to the conventions of XML schema and can refer to XML Schema

s imple types, serv ice- local complex types and serv ice- local ex tended s imple
types . Serv ice- local data types are defined in a cor responding UPnP
Serv ice Template or they are allow ed to be vendor-spec if ic. See also c lause
2.5.1 , “Def ining and process ing extended data types ” and c lause 2.5.2,
“Str ing equivalents of extended data types”.

For example: <dataType type="xsd:byte">string</dataType>

For a s tate var iable us ing an ex tended data type v ia the type attribute and

containing complex data, the <defaultValue>, <allowedValueList>

and <allowedValueRange> elements shall not be present. In such case
the restr ic t ions for the data type shall be described in the data type schema
prov ided in the service template document.

The <dataType> element shall have one of the following values:

ui1

Uns igned 1 Byte int. Same format as int without leading sign.

ui2

Uns igned 2 Byte int. Same format as int without leading sign.

ui4

Uns igned 4 Byte int. Same format as int without leading sign.

ui8

Uns igned 8 Byte int. Same format as int without leading sign.

i1

1 By te int. Same format as int.

i2

2 By te int. Same format as int.

i4

4 Byte int. Same format as int. shall be betw een -2147483648 and
2147483647.

 — 59 —

© 2014 UPnP Forum. All Rights Reserved.

i8

8 Byte int. Same format as int. shall be betw een -

−9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, from –(26 3) to
26 3 - 1.

int

Fixed point, integer number. Is allow ed to have leading s ign. Is allow ed to

have leading zeros, w hich should be ignored by the rec ipient. (No currency
symbol.) (No grouping of digits to the left of the decimal, e.g., no commas.)

r4

4 Byte f loat. Same format as f loat. shall be betw een 3.40282347E+38 to
1.17549435E-38.

r8

8 Byte f loat. Same format as f loat. shall be betw een -

1.79769313486232E308 and -4.94065645841247E-324 for negative values ,
and betw een 4.94065645841247E-324 and 1.79769313486232E308 for
pos it ive values, i.e., IEEE 64-bit (8-Byte) double.

number

Same as r8.

f ixed.14.4

Same as r8 but no more than 14 digits to the left of the dec imal point and no
more than 4 to the r ight.

f loat

Floating point number. Mantissa (left of the dec imal) and/or exponent is
allow ed to have a leading sign. Mantissa and/or exponent Is allow ed to have
leading zeros , w hich should be ignored by the rec ipient. Dec imal character

in mantissa is a period, i.e., w hole digits in mantissa separated from
fractional digits by per iod (“ .”). Mantissa separated from exponent by “E” .
(No currency symbol.) (No grouping of digits in the mantissa, e.g., no
commas .)

char

Unicode string. One character long.

string

Unicode string. No limit on length.

date

Date in a subset of ISO 8601 format without t ime data.

dateTime

Date in ISO 8601 format with allowed time but no t ime zone.

dateTime.tz

Date in ISO 8601 format with allowed time and allowed time zone.

time

Time in a subset of ISO 8601 format with no date and no t ime zone.

time.tz

Time in a subset of ISO 8601 format with allowed time zone but no date.

boolean

“0” for false or “1” for true. The values “true”, “yes” , “false” , or “no” are
deprecated and shall not be sent but shall be accepted w hen received.
When received, the values “true” and “yes” shall be interpreted as true and
the values “ false” and “no” shall be interpreted as false.

 — 60 —

© 2014 UPnP Forum. All Rights Reserved.

bin.base64

MIME-sty le Base64 encoded binary BLOB. Takes 3 By tes , splits them into 4

par ts, and maps each 6 bit piece to an oc tet. (3 oc tets are encoded as 4.)
No limit on s ize.

bin.hex

Hexadec imal digits representing octets . Treats each nibble as a hex digit
and encodes as a separate Byte. (1 octet is encoded as 2.) No limit on siz e.

uri

Universal Resource Identif ier.

uuid

Universally Unique ID. See clause 1.1.4 , “UUID format and recommended
generation algorithms” for the MA NDATORY UUID f ormat.

<defaultValue>

Recommended. Expected, init ial value. Def ined by a UPnP Forum w orking committee

or delegated to UPnP vendor . shall match data type. shall satisfy

<allowedValueList> or <allowedValueRange> cons traints . For a state var iable

us ing an ex tended data type v ia the type attr ibute and containing complex data, the
<defaultValue> element shall not be present.

<allowedValueList>

Recommended. Enumerates legal s tr ing values. PROHIBITED for data types other

than s tr ing. At mos t one of the <allowedValueRange> or <allowedValueList>
elements are allow ed to be specif ied. Sub elements are ordered. For a state var iable

us ing an ex tended data type v ia the type attr ibute and containing complex data, the

<allowedValueList> element shall not be present. Contains the follow ing sub
elements :

<allowedValue>

Required. A legal value for a string var iable. Defined by a UPnP Forum
w orking committee for s tandard s tate var iables ; if the UPnP Forum w orking

committee permits it, UPnP vendors are allow ed to add vendor-spec if ic
allow ed values to standard state var iables. Spec if ied by UPnP vendor for
ex tensions. String. shall be < 32 characters.

<allowedValueRange>

Recommended. Defines bounds for legal numer ic values; def ines resolution for

numer ic values. Def ined only for numer ic data types (i.e. integers and f loats). At

most one of the <allowedValueRange> or <allowedValueList> elements are
allow ed to be spec if ied. For a state var iable us ing an extended data type v ia the

type attribute and containing complex data, the <allowedValueRange> element

shall not be present. Contains the follow ing sub elements w hich shall have the same
type as the state variable :

<minimum>

Required. Inc lus ive low er bound. Defined by a UPnP Forum w orking

committee or delegated to UPnP vendor. Single numer ic value. The value of

the <minimum> element shall be less than the value of the <maximum>
element. If a w orking committee has ass igned an explic it value for this
element, then vendors shall use that value. Otherw ise, vendors shall choose

their ow n value, but alw ays w ithin the allow ed range for the data type of this
state variable. If the w orking committee defines an allow ed range for this
state var iable, then the value shall be w ithin that allow ed range as defined
by the <step> value (See below).

<maximum>

Required. Inc lusive upper bound. Defined by a UPnP Forum w orking
committee or delegated to UPnP vendor. Single numer ic value. The value of

the <maximum> element shall be greater than the value of the <minimum>
element. If a w orking committee has ass igned an explic it value for this

element, then vendors shall use that value. Otherw ise, vendors shall choose
their ow n value, but alw ays w ithin the allow ed range for the data type of this
state variable. If the w orking committee defines an allow ed range for this

 — 61 —

© 2014 UPnP Forum. All Rights Reserved.

state var iable, then the value shall be w ithin that allow ed range as defined
by the <step> value (See below).

<step>

Recommended. Def ines the set of allow ed values permitted for the state

var iable betw een the <minimum> and <maximum>. The value of the <step>

element div ides the inc lus ive range from <minimum> value to <maximum>

value into an integral number of equal par ts. Addit ionally , <maximum> value

= <minimum> value + n * <step> value, w here n is a pos it ive integer .
Def ined by a UPnP Forum w orking committee or de legated to UPnP vendor .
If a w orking committee has ass igned an explic it value for this element, then

vendors shall use that value. Otherw ise, vendors are allow ed to choose

their ow n value. When the <step> element is omitted and the data type of
the s tate v ar iable is an integer, the default value of step is 1; o therw ise,
w hen s tep is omitted, the state var iable are allow ed to be set to any value

w ithin the inc lusive range of <minimum> value to <maximum> value. Single
numer ic value.

Note that one should be carefullwhen dealing wit h float ing point values so
that conversions and/or rounding errors do not cause inaccurate

comparison operations.

The <relatedStateVariable> element of an <argument> element definition shall be the

name of a state variable defined in the same service description. The
<relatedStateVariable> element defines the data type of the argument; there is not

necessarily any semant ic relat ionship between an argument and the related state variable
used to define its type. The <relatedStateVariable> element shall specify the name of a

state variable in the service state table which has the same data type, allowed value l ist , or
al lowed value range as the argument. If no state variable ex ists with an appropriate definit ion,
the work ing commit tee (or vendor) shall define an additional state variable for that purpose;

state variables which are defined solely for the purpose of describing the type of an argument
shall have a name that inc ludes the prefix “A_ARG_TYPE_”.

The <allowedValueList> and <allowedValueRange> elements are allowed to be used

to indicate opt ional device capabil it ies. Working commit tees are allowed to REQUIRE all

values in the l ist or range to be supported by all vendors (no opt ions), REQUIRE a minimum
subset with additional values being allowed, or allow vendors to entirely dec ide which port ions
of the l ist or range to support. Vendors are allowed to add additional, vendor-specific values
to the allowed value lis t by us ing the “X_” prefix on the vendor-defined allowed values, i f

permit ted by working committees. However, i t is be noted that greater flex ibi lity in allowed
capabil ities reduces the number of values that control points can depend on to be present,

with corresponding impacts on interoperability. If device capabili ties are expected to change
during device operation, working committees should define evented state variables or
separate act ions to detect device capabilit ies rather than embedding capabil ities information

in the service descript ion, because the latter requires cancellat ion of advert isements and
readvert isement each time the service descript ion document is changed. If the service
description is used to convey capabilit ies informat ion, the device shall omit from the service

descript ion any allowed elements (ac tions, al lowed values, etc .) that are not implemented.

For a state variable us ing an extended data type via the type att ribute and containing

complex data, the <defaultValue>, <allowedValueList> and <allowedValueRange>

elements shall not be present. In such case the res tric tions for the data type shall be

described in the data type schema typically provided in the service template document.

2.5.1 De fining and processing ex tended da ta types

The optional type at t ribute of the <dataType> element as defined in clause 2.5, “Service

description” above allows a service description document (SCPD) to include extended data
types (defined by the UPnP technical commit tee, a UPnP working committee or vendor -
spec ific data types) that have more st ructure and express ion than the existing XSD data types.

As ment ioned above, this type att ribute can only be applied when the base data type is of

type string. The value attached to the type at t ribute refers to a data type from a separate

schema defined outs ide this document.

 — 62 —

© 2014 UPnP Forum. All Rights Reserved.

As a firs t RECOMMENDATION on the use of extended data types, i f UPnP actions only have

s imple arguments, these should be declared using UPnP defined data types, instead of XML
schema s imple types. This enables use of such UPnP act ions by UPnP 1.0 stacks that are not
XML-schema enabled.

As a further RECOMMENDATION on extended data types that are al lowed to be defined,
arrays should be declared by using a sequence with an element type of which the number o f

occurrences is restricted. For example, i f an array -type “myArrayType” of 50 long integers
needs to be dec lared, this could be the corresponding schema fragment:

 <xsd:complexType name="myArrayType">

 <xsd:sequence>
 <xsd:element name="x" type="xsd:long" minOccurs="50" maxOccurs="50"/>

 </xsd:sequence>

 </xsd:complexType>

References to this type (as with any XML namespace) can be made in one of two ways. The
first option is a ful ly qualified namespace reference in the type att ribute alone. In this c ase

the namespace reference in the type att ribute shall not only refer to the schema, but also to

the type within that schema.

 <scpd xmlns="urn:schemas-upnp-org:service-1-0"
 configId="configuration number">

 ...
 <dataType type="urn:domain-name:schema-name:datatype-name">

 string

 </dataType>

 ...

 </scpd>

The second opt ion is to define the namespace at the beginning of the SCPD document and
then make a reference in the type definition. In this case, the type att ribute contains a prefix

that ident ifies the namespace, fol lowed by the data type -named.

 <scpd xmlns="urn:schemas-upnp-org:service-1-0"

 xmlns:dt="urn:domain-name:schema-name"

 configId="configuration number">

 ...
 <dataType type="dt:datatype-name">

 string

 </dataType>

 ...

 </scpd>

Implementat ions shall support both formats. The first format is potentially eas ier to parse,
while the second format may result in shorter description fi les (i.e. when the same namespace
is used mult iple t imes in the same document).

These data types written in XSD Schema need not be processed at run -t ime. Instead, an
implementer is al lowed to use the referred schema as a s tandard descript ion of the type to

parse for that particular type att ribute. To allow run -t ime schema process ing of ex tended data
types, an opt ional location of the extended data type schema is al lowed to be expressed in
the SCPD us ing the s tandard XSD xs i:schemaLocat ion and xsi:noNamespaceSchemaLocation

att ributes as defined in c lause 4.3.2 of XML Schema Part 1. These att ributes can be used in
the root SCPD element (essentially an instance document) where the extended data type is
defined, as i l lus t rated below:

 — 63 —

© 2014 UPnP Forum. All Rights Reserved.

 <scpd xmlns="urn:schemas-upnp-org:service-1-0"
 xmlns:dt="urn:domain-name:schema-name"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:domain-name:schema-name

 http://some.company.com/dir/file.xsd"

 configId="configuration number">

 ...

 <dataType type="dt:datatype-name">

 string

 </dataType>

 ...

 </scpd>

Alternat ively, these att ributes are al lowed to be dec lared on use in the <dataType> element

where the ex isting fully qualified namespace and type name for the extended data type are
defined. An example for reference is given below:

 <scpd xmlns="urn:schemas-upnp-org:service-1-0"
 configId="configuration number">

 ...
 <dataType type="urn:domain-name:schema-name:datatype-name"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://some.company.com/dir/file.xsd">

 string

 </dataType>

 ...

 </scpd>

2.5.2 String equivalents of ex tended da ta types

A number of work ing committees have created services based on UPnP 1.0 (which does not
support extended data types) that define their own encoding of informat ion ins ide specific

st ring-type s tate variables. To provide these working commit tees with an upgrade path to
extended datatypes writ ten in native XML 3 , a mechanism is defined that gives working

committees the option to define the “st ring equivalent” of an extended data type (working
committees can dec ide not to). If a s t ring equivalent of an extended data type is defined,
there are two valid ways to represent the value of the data type: either as an extended data

type, writ ten in native XML, or as a st ring, that encodes the datatype as specified by the
work ing commit tee.

The mechanism uses the USER-AGENT header field in action invocat ions and event
subscript ions (see also clause 2.1, “Generic requirements on HTTP usage”). If a control point
invokes an act ion without a USER-AGENT header field, or i f the USER-AGENT header field

does not specify UPnP vers ion 2.0 or greater, the values of in-arguments and out -arguments
shall be encoded us ing the “s t ring equivalent”.

If a control point invokes an action with a USER-AGENT header field that spec ifies UPnP
vers ion 2.0 or greater, the values of in-arguments and out -arguments shall be encoded using
the extended data type writ ten in nat ive XML.

If a control point has subscri bed to events without a USER-AGENT header field, or i f the
USER-AGENT header field specifies a UPnP version less than 2.0, al l values of complex -type

evented state variables that are sent to the control point shall be encoded us ing the “s t ring
equivalent”. If no “st ring equivalent” is defined for an evented s tate variable, subscription
without the correct USER-AGENT header field shall be refused.

3 In this text “native XML” refers to datatypes formatted according to XML -schema using the
normal XML format, while “s tring -equivalent of an extended datatype” refers to encoding a

complex data type inside a UPnP s tring, examples of which (escaped XML, comma-separated
lis ts) can be found in the ContentDirectory:1 specification.

 — 64 —

© 2014 UPnP Forum. All Rights Reserved.

If a control point has subscribed to events with a USER-AGENT header field that specifies

UPnP vers ion 2.0 or greater, al l values of complex -type evented state variables that are sent
to the control point shall be encoded us ing the extended data type writ ten in nat ive XML.

2.5.3 Generic requirements

For future extens ibi lity and according to the requirements in clause 2.7, “Non-standard vendor
extensions ” and clause 2.8, “UPnP Device Schema”, when processing XML like the lis ting
above, devices and control points shall ignore: (a) any unknown elements and their sub

elements or content , and (b) any unknown at t ributes and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions ” and c lause

2.8, “UPnP Device Schema”, control points and devices shall ignore any XML comments or
XML process ing ins t ruct ions embedded in UPnP device and service descriptions that they do
not unders tand. UPnP service descriptions shall be encoded us ing UTF-8.

When the value of any tex t element or att ribute contains one or mor e characters reserved as
markup (such as ampersand (“&”) or less than (“<”)), the text shall be escaped in accordance

with the provisions of clause 2.4 of the XML specificat ion and each such character replaced
with the equivalent numeric representat ion or string (such as “&” or “< ”). Such
characters appearing in URLs are allowed to also be percent -encoded in accordance with the

URL percent -encoding rules spec ified in c lauses 2.1 and 2.4 of RFC 3986. Note that i t is
logically possible for a service to have no actions but have s tate variables and event ing;
though unlikely, such a service would be an autonomous information source. However, a

service with no s tate variables is PROHIBITED.

Unlike device descript ions, service descriptions and assoc iated val ues shall not use locale-

spec ific values; this inc ludes service descript ions, values of ac tion arguments, and values of
state variables. Instead, most act ion arguments and state variables shall use values that are
expressed in a locale-independent manner; control points are allowed to convert and/or

format the information from a standard form into the correct language and/or format for the
locale. For example, dates are represented in a locale -independent format (ISO 8601), and
integers are represented without locale-specific formatting (e.g., no currency symbol, no

grouping of digits). String values shall be represented in a locale-independent manner.
Variables with an allowedValueList shall use token values in the language of UPnP standards
and not reflec t s t rings intended to be displayed in a localized user interface.

2.5.4 Ordering of Elements

The order of XML elements in device and service descript ion documents shall adhere to the
order as defined in the corresponding specification as defined by the working co mmittee for

that device or service type. Furthermore, the order of elements (e.g. arguments) in control
messages and in their responses shall adhere to the order defined in the device’s service
descript ion document.

Note: UPnP 1.0 does NOT REQUIRE that the order of XML elements in device and service
description documents adheres to the order as defined in the corresponding schema (as

defined by the working committee) for that device or service type. However, it does
REQUIRE that control messages and responses are ordered according to the corresponding
device’s service description, a REQUIREMENT that is sometimes overlooked. Therefore,

when receiving messages from UPnP 1.0 services, control points should be able to process
out-of-order elements; and when t ransmitting messages to UPnP 1.0 services, control points
shall send elements in the order defined by that part icular device’s service descript ion.

2.5.5 Versioning

Services standardized by UPnP Forum work ing committees have an integer vers ion. Every
later vers ion of a service shall be a superset of the previous vers ion, i.e., i t shall inc lude all

act ions and state variables exact ly as they are defined by earl ier vers ions of the service. The
UPnP service type remains the same across all vers ions of a service whereas the service
vers ion shall be larger for later vers ions. Vers ions of device and service templates are

 — 65 —

© 2014 UPnP Forum. All Rights Reserved.

al lowed to have non-integer versions (such as “0.9”) during development in the working

committee, but this shall become an integer upon standardizat ion. Devices and services are
al lowed to have a vers ion number greater than the major vers ion number of the architecture
they are des igned for (e.g. , “Power:2” may be des igned to work on UDA vers ion 1.0).

2.6 UPnP Service Template

The l is ting above also il lust rates the relationship between a UPnP service description and a
UPnP Service Template. As explained above, the UPnP descript ion for a service is written by

a UPnP vendor, in XML, following a UPnP Service Template. A UPnP Service Template is
produced by a UPnP Forum work ing commit tee as a means to s tandardize devices.

By appropriate spec ification of placeholders, the listing above can be either a UPnP Service
Template or a UPnP service description. Recall that some placeholders would be defined by a
UPnP Forum working commit tee (colored red), i.e., act ions and their parameters, and s tates

and their data type, range, and event characteris tics . If these were spec ified, the l ist ing above
would be a UPnP Service Template, codifying the standard for this type of servic e. Along with
UPnP Device Templates (see clause 2, “Descript ion”), UPnP Service Templates are one of

the key deliverables from UPnP Forum work ing commit tees.

Tak ing this another step further, the remaining placeholders in the listing above would be
spec ified by a UPnP vendor (colored purple), i .e., additional, vendor-spec ified act ions and

state variables. If these placeholders were specified (as well as the others), the l ist ing would
be a UPnP service descript ion, suitable for effec t ive control of the service within a device.

Put another way, the UPnP Service Template defines the overall type of service, and each
UPnP service descript ion ins tantiates that template with ven dor-specific addit ions. The firs t is

c reated by a UPnP Forum work ing commit tee; the lat ter by a UPnP vendor.

2.7 Non-standard vendor extensions and l imitations

As explained above, UPnP vendors are allowed to differentiate their devices and extend a

standard device by inc luding addit ional services and embedded devices. Similarly, UPnP
vendors are al lowed to extend a s tandard service by including addit ional act ions, state
variables or al lowed values. Naming convent ions and condit ions for each of these are l isted in

the table below and explained in detail above.

Table 2-1: — Vendor ex tensions

Type of extension Standar d Non-Standar d

device type ur n: schemas-upnp-org:device:deviceType:v ur n:domain-name:device :deviceType:v

ser vice type ur n: schemas-upnp-org:service :serviceType:v ur n:domain-name:service:serviceType:v

ser vice ID ur n:upnp-org:serviceId:serviceID ur n:domain-name:serviceId :serviceID

action name Shall comp ly with the syntax rules of the

standardized action name as def ined in clause 2.5,

“Ser vice descr iption”.

Shall comp ly with the syntax rules of the

non- standardized action name as defined in

clause 2.5, “Service descr iption”.

stateV ariable name Shall comp ly with the syntax rules of the

standardized stateVariable name as defined in
clause 2.5, “Service descr iption”.

Shall comp ly with the syntax rules of the

non- standardized stateVariable name as
def ined in clause 2.5, “Service

descr iption”.

allowedV alue value Shall be a legal value for a str ing var iable. Only

values exp lici t ly def ined by a working committee
ar e allowed .

Per mitted only i f allowed by the working

committee. Shall begin with a V endor
Domain Name, followed by the underscore

char acter (“_”), followed by a legal value

for a str ing var iable.

XM L elements and
their attr ibutes in

device or service

descr iption

Def ined by the UPnP Device and Service Schemas. Ar b itrary XML, scoped by one or more XML
namespaces owned by the vendor. Shall be

enclosed in an element that begins with

“X_”.

 — 66 —

© 2014 UPnP Forum. All Rights Reserved.

Type of extension Standar d Non-Standar d

XM L attr ibutes of

standard elements in
device or service

descr iption

Def ined by the UPnP Device and Service Schemas. Ar b itrary attr ibutes, scoped by one or more

XM L namespaces, owned by the vendor.
Shall begin with “X_”.

As the last two rows of the table above indicate, UPnP vendors are allowed to also add non-

standard XML to a device or service description. Each addition shall be scoped by a vendor-
owned XML namespace. Arbit rary XML shall be enclosed in an element that begins with “X_, ”

and this element shall be a sub element of a standard complex type. Non -standard att ributes
are al lowed to be added to standard elements provided these at t ributes are scoped by a
vendor-owned XML namespace and begin with “X _”.

To i l lust rate this, below are l ist ings with placeholders (in italics) for actual elements and
values. Some of these placeholders would be spec ified by a UPnP vendor (purple) and some

are defined by the UPnP Device Architec ture (green).

 <RootStandardElement

 xmlns="urn:schemas-upnp-org:device-1-0"
 xmlns:n="domain-name:schema-name">

 <!-- other XML -->
 <AnyStandardElement n:X_VendorAttribute="arbitrary string value">

 <!-- other XML -->

 </AnyStandardElement>

 <!-- other XML -->

 </RootStandardElement>

<RootStandardElement>

A standard root element. xmlns attr ibute defines namespaces , in this case, a s tandard UPnP namespace and
a non-standard namespace w ith the pref ix n. (Note: n is just a placeholder. A vendor can spec ify any pref ix to
identify the namespace that is valid according to the Namespaces i n XML specif ication.)

 For dev ice descriptions, shall be <root>.

 For service descriptions, shall be <scpd>.

<AnyStandardElement>

Any standard element, root or otherw ise, content of tex t or element only. Shall already be inc luded as
par t of the standard dev ice or serv ice descr iption. X_VendorAttribute shall begin w ith “X_”. (Prefix

“A _” is reserved.) are allowed to have an arbitrary s tring value.

 <StandardComplexType n:X_VendorAttribute="vendor value">

 <n:X_VendorElement xmlns:n="domain-name:schema-name">

 <!-- arbitrary XML -->
 </n:X_VendorElement>

 </StandardComplexType>

<StandardComplexType>

Element of complex type. Shall already be included as part of the standard device o r service description.

 For device descript ions , s hall be one of: <root>, <specVers ion>, <device>, <iconList>, <icon>,

<serviceList>, <service>, or <deviceList>.

 For service descriptions, shall be one of: <scpd>, <actionLis t>, <action>, <argumentList>, <argument>,

<serviceStateTable>, <s tateVariable>, <allowedValueList>, or <allowedValueRange>.

<X_VendorElement>

Shall begin w ith “X_”. (Pref ix “A_” is reserved.) Shall have a value for the xmlns attr ibute. Is allow ed to

contain arbitrary XML.

2.7.1 Placement of Addi tional Elements and Attributes

Ins tances of any UPnP schema, including device and service descript ions, control act ions,

errors and event notifications, are al lowed to inc lude addit ional XML elements (other than
those defined by the UPnP Forum) only at the end of an ordered sequence of elements

 — 67 —

© 2014 UPnP Forum. All Rights Reserved.

corresponding to a given complex type. Additionally, instances of any UPnP schema are

allowed to inc lude addit ional at t ributes with any element .

Exception for UPnP 1.0 devices:

UPnP 1.0 al lows the inc lusion of addit i onal elements anywhere within device and service
descriptions, control act ions, errors and event not ificat ions, provided that the XML is well -

formed. Therefore, when receiving messages from UPnP 1.0 devices, control points shall
handle unknown elements and at t ributes found anywhere within the message.

2.8 UPnP Device Schema

The paragraphs above explain UPnP device descript ions and i llus t rate how one would be
instant iated from a UPnP Device Template. As explained, UPnP Device Templates are
produced by UPnP Forum working committees, and these templates are based upon the

UPnP Device Schema. This schema defines the st ruc tures and data types used to create
UPnP Device Templates. clause B.1, “UPnP Device Schema” contains the schema; below is
an explanat ion of this schema.

The UPnP Device Schema is written in XML and according to the convent ions of XML Schema
(Part 1: Structures, Part 2: Datatypes). XML Schema provides a method of describing the

st ructure of an XML document. The XML Schema description language itself is based upon
XML. The language is very robust; it spec ifies which elements are required vs . al lowed,
element nest ing, data types for values (as well as other properties not of interest here) and

much more. The UPnP Device Schema uses these XML Schema construct ions to define
elements like <specVers ion>, <URLBase>, <deviceType> , etc., l isted in detail above.
Because the UPnP Device Schema is constructed using a precise desc ription language, it is

unambiguous. As the UPnP Device Schema, UPnP Device Templates, and UPnP device
descriptions are all machine-readable, software tools are al lowed to be devised to validate the
latter two, checking that they contain al l the required elements, are correctly nested, and have

values of the correct data types.

2.9 UPnP Service Schema

The paragraphs above explain UPnP service descript ions and il lust rate how one would be

instant iated from a UPnP Service Template. Like UPnP Device Templates, UPnP Service
Templates are produced by UPnP Forum working committees, and these templates are based
upon the UPnP Service Schema. This schema defines the st ructure and data types used to

create UPnP Service Templates. As explained above, the UPnP Service Schem a is written in
XML according to the convent ions of XML Schema (Part 1: Struc tures, Part 2: Datatypes).
c lause B.2, “UPnP Service Schema” contains a l is t ing of this schema

2.10 UPnP Data type Schema

The UPnP bas ic data types for state variables are defined in c lause 2.5, “Service descript ion”.
For any extended data types for state variables use d by a service template, the service

template shall include either a reference to al l relevant schemas for the extended data types
or inc lude a new service spec ific datatype schema with a corresponding unique target
namespace. If any extended data types are used for state variables within an SCPD, the

corresponding namespace for each extended data type shall be referenced within the SCPD
according to the “Namespaces in XML” spec ificat ion. Clause 2.5, “Service description”
contains an example SCPD with namespace dec larations.

2.11 Re trieving a description using HTTP

As explained above, after a control point has discovered a device, it sti ll knows very lit tle
about the device. To learn more about the device and its capabili ties, the control point shall

ret rieve the UPnP descript ion for the device us ing the URL provided by the device in the
discovery message. Then, the control point shall ret rieve one or more service descript ions
us ing the URL(s) provided in the device descript ion. This is a s imple HTTP -based process

and uses the following subset of the overall UPnP protocol s tack. (The overall UPnP protocol
s tack is l isted at the beginning of this document.)

 — 68 —

© 2014 UPnP Forum. All Rights Reserved.

A multi -homed device shall send description documents us ing the UPnP -enabled interface on

which the HTTP GET request was received. To ret rieve the UPnP description using a
part icular interface, a mult i -homed control point shall use the URL provided in the discovery
message which arrived on that interface.

Figure 2-2: — Description re trieva l protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP De vice Architecture [green-bold]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, descript ion messages contain vendor -spec ific information, e.g., device

type, service type, and required services. Moving down the stack, vendor content is
supplemented by informat ion from a UPnP Forum working committee, e.g., model name,
model number, and specific URLs. Messages from the layers above are hosted in UPnP -

spec ific protocols, defined in this document. In turn, the above messages are delivered via
HTTP over TCP over IP. For reference, colors in [square brackets] above indicate which
protocol defines spec ific header fields and body elements in the description messages l isted

below.

When a control point discovers a device on the network, i t are allowed to wish to ret rieve the

Device Descript ion document and Service Descript ion Doc uments. Retrieving the UPnP
device description is simple: the control point issues an HTTP GET request to the URL in the
discovery message, and the device returns its descript ion in the body of an HTTP response.

Similarly, to ret rieve a UPnP service descri ption, the control point issues an HTTP GET
request to the corresponding URL in the device description, and the device returns the
description in the body of an HTTP response. The header fields and body for the response

and request are explained in detail below.

Firs t, a control point shall send a request with method GET in the fol lowing format. Values in

i tal ics are placeholders for ac tual values.

 GET /descriptionPath HTTP/1.1

 HOST: hostname:portNumber

 ACCEPT-LANGUAGE: language preferred by control point

(No body for request to ret rieve a description, but note that the message shall have a blank
l ine fol lowing the las t HTTP header field.)

Listed below are details for the request line and header fields appearing in the l ist ing above.
Field names are not case sensit ive. All field values are case sensitive except where noted.

See RFC 2616 and RFC 1945 for further requirements on encoding of values of these fields .

Request l ine

GET

Method defined by HTTP. Can be GET or HEA D.

descriptionPath

Path component of dev ice descr iption URL (LOCA TION header f ield in discovery message) or of the fully
qualif ied serv ice descr iption URL. (If the SCPDURL sub element of the serv ice element in the dev ice
descr iption is an absolute URL, the fully qualif ied serv ice descr iption URL is the SCPDURL sub element.
Otherw ise (the SCPDURL sub element is a relative URL) , the fully qualif ied serv ice descr iption URL is the URL

resolved from the SCPDURL sub element in accordance w ith c lause 5 of RFC 3986, using either the URLBase

 — 69 —

© 2014 UPnP Forum. All Rights Reserved.

element, if spec if ied, or the URL from w hich the device description w as retr ieved as the base URL.) Single,
absolute path (see also RFC 2616).

HTTP/1.1

The vers ion supported by the control point. (Note: the control point shall implement all mandatory components
of the vers ion spec if ied) . are allow ed to be any HTTP vers ion that is backw ards compatible to HTTP/1.0 (like
HTTP/1.1) .

Header f ields
HOST

Required. Field value contains domain name or IP address and optional port components of dev ice descr iption
URL (LOCA TION header f ield in discovery message) or of the fully qualif ied serv ice description URL. (If the
SCPDURL sub element of the serv ice element in the dev ice descr iption is an absolute URL, the fully qualif ied
serv ice description URL is the SCPDURL sub element. Otherw ise (the SCPDURL sub element is a relative

URL) , the fully qualif ied serv ice descr iption URL is the URL resolved from the SCPDURL sub element in
accordance w ith c lause 5 of RFC 3986, us ing either the URLBase element, if spec if ied, or the URL from w hich
the dev ice description was retrieved as the base URL.) If the port is empty or not given, port 80 is assumed.

ACCEPT-LANGUAGE

A llow ed. Recommended for retr iev ing device descr iptions. Field value contains preferred language(s) for
descr iption. If no descr iption is available in this language, dev ice is allow ed to return a description in a default
language. See RFC 1766 language tag(s).

After a control point sends a request, the device takes the second step and responds with a
copy of its description. Inc luding expected t ransmission time, a device shall respond within 30

seconds. If it fails to respond within this time, the control point should re-send the request . A
device shall send a response in the fol lowing format and in accordance with clause 2.1,
“Generic requirements on HTTP usage”. Two example responses are provided below: one

that uses the CONTENT-LENGTH header field, and one that uses chunked encoding (with 2
chunks). Values in i tal ics are placeholders for ac tual values.

Note: XML namespace prefixes do not have to be the spec ific examples shown below (e.g.,
“s ” or “u”); they can be any value that obeys the rules of the general XML namespace
mechanism; a device shall accept act ion invocat ions that use other legal XML namespace

prefixes.

Response using CONTENT-LENGTH header fie ld – Va l id w ith HTTP/1.0 or HTTP/1.1

 HTTP/1.1 200 OK

 CONTENT-LANGUAGE: language used in description

 CONTENT-LENGTH: bytes in body

 CONTENT-TYPE: text/xml; charset="utf-8"

 DATE: when responded

 Body

Response using chunked encoding – Va l id w ith HTTP/1.1 only

 HTTP/1.1 200 OK

 TRANSFER-ENCODING: chunked

 CONTENT-TYPE: text/xml; charset="utf-8"

 CONTENT-LANGUAGE: language used in description

 DATE: when responded

 Length of chunk 1 in hexadecimal notation

 Chunk 1

 Length of chunk 2 in hexadecimal notation

 Chunk 2

 0

The body of this response is a UPnP device or service descript ion as explained in detail
above. Listed below are detail s for the header fields appearing in the listing above. Field
names are not case sens it ive. All field values are case sens it ive except where noted.

Sta tus Line

 — 70 —

© 2014 UPnP Forum. All Rights Reserved.

HTTP/1.1

The highest vers ion supported by the or igin server that is compatible w ith the control point that issued the

request. For example, if the control point spec if ied suppor t for HTTP/1.0 in the request, the response shall
contain HTTP/1.0.

200 OK

HTTP def ined s tatus code indicating that no HTTP er rors have occurred.

Header fie lds

CONTENT-LANGUAGE

Required if and only if request inc luded an A CCEPT-LA NGUA GE header f ield. Field value contains language
of description. RFC 1766 language tag(s) .

CONTENT-LENGTH

Required if Or igin Server does not c lose the sess ion after sending the response A ND Or igin Server does not
send the response using chunked encoding.

PROHIBITED if Or igin Server sends the response using chunked encoding. Allowed otherwise.

Field value specif ies the length of the body in bytes. Integer.

TRANSFER-ENCODING

A llow ed for HTTP/1.1 and above. Field value spec if ies w hether the response is chunked encoded by having
f ield value “chunked”. Shall NOT be specif ied if CONTENT-LENGTH header f ield is present.

CONTENT-TYPE

Required. Field value shall be “text/xml; charset="utf -8" ” for description documents.

DATE

Recommended according to RFC 2616, c lause 14.18. Field value contains date w hen response w as generated.
“ r f c1123-date” as defined in RFC 2616.

SERVER

(No SERV ER header f ield is required for description messages.)

Note that because HTTP 1.1 al lows use of chunked encoding, some devices are allowed to

send the descript ion us ing chunked encoding if the GET request spec ifies HTTP 1.1.
Therefore all implementations that inc lude HTTP 1.1 cl ient support shall support receiving
chunked encoding.

2.12 Re fe rences

ISO 8601, ISO (Internat ional Organization for Standardization). Representations of dates and
t imes, 1988-06-15. Available at : ht tp: //www.w3.org/TR/1998/NOTE -datetime-19980827.

RFC 822, Standard for the format of ARPA Internet tex t messages. Available at :
ht tp: / /www. iet f.org/rfc /rfc822.txt.

RFC 1123, Inc ludes format for dates, for, e.g. , HTTP DATE header field. Available at :
ht tp: / /www. iet f.org/rfc /rfc1123.tx t.

RFC 1766, Format for language tag for, e.g. , HTTP ACCEPT-LANGUAGE header field.
Available at : ht tp: //www. ietf.org/rfc /rfc1766. txt. See also ht tp://www.loc.gov/s tandards/iso639-

2 for language codes.

RFC 2045, Mult ipurpose Internet Mail Extensions (MIME) Part One: Format of Internet

Message Bodies. Available at : ht tp://www.ietf.org/ rfc/rfc2045. txt.

RFC 2046, Mult ipurpose Internet Mail Extensions (MIME) Part Two: Media Types. Available at:

ht tp: / /www. iet f.org/rfc /rfc2046.tx t.

RFC 2083, PNG (Portable Network Graphics) Spec ification Vers ion 1.0. Available at :

ht tp: / /www. iet f.org/rfc /rfc2083.tx t. See also ht tp: //www.w3.org/TR/ REC-png.html .

http://www.w3.org/TR/1998/NOTE-datetime-19980827
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.loc.gov/standards/iso639-2
http://www.loc.gov/standards/iso639-2
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2083.txt
http://www.w3.org/TR/REC-png.html

 — 71 —

© 2014 UPnP Forum. All Rights Reserved.

RFC 2387, Format for represent ing content type, e.g., mimetype element for an icon.

Available at : ht tp: / /www. ietf.org/rfc/ rfc2387.tx t.

RFC 2616, HTTP: Hypertex t Transfer Protocol 1.1. Avai lable at :
ht tp: / /www. iet f.org/rfc /rfc2616.tx t.

RFC 3986, Uniform Resource Ident ifiers (URI): Generic Syntax. Available at :

ht tp: / /www. iet f.org/rfc /rfc3986.tx t.

UPC, Universal Product Code. 12-digit, al l -numeric code that ident ifies the consumer package.

Managed by the Uniform Code Counc il. Available at : ht tp:/ /www.uc-
counc il.org/main/ID_Numbers_and_Bar_Codes.html .

XML, Extensible Markup Language. Available at : ht tp: //www.w3.org/TR/2000/REC-xml-
20001006.

XML Schema (Part 1: Struc tures, Part 2: Datatypes). Available at :
ht tp: / /www.w3.org/TR/xmlschema-1, ht tp: //www.w3.org/TR/xmlschema-2.

Namespaces in XML, Available at : ht tp: //www.w3.org/TR/REC-xml-names/.

3 Control

Control is Step 3 in UPnP network ing. Control comes after address ing (Step 0) where devices
get a network address, after discovery (Step 1) where control points f ind interest ing device(s),
and af ter description (Step 2) where control points learn about device capabil it ies. Control is

independent of eventing (Step 4) where control points lis ten to state changes in device(s).
Through control, control points invok e actions on devices and poll for values. Control and
event ing are complementary to presentation (Step 5) where control points display a user

interface provided by device(s).

Given knowledge of a device and its services, a control point can ask those services to invoke

act ions and receive responses indicat ing the result of the act ion. Invok ing actions is a kind of
remote procedure call; a control point sends the action to the device's service, and when the
act ion has completed (or fai led), the service returns any results or errors .

Figure 3-1: — Control a rchitecture

control point

root device

service

service

device

service

SOAP action

SOAP resp

To control a device, a control point invokes an action on the device's service. To do this, a
control point sends a suitable control message to the fully qualified control UR L for the
service obtained from the controlURL sub element of the service element of the device

description. If the controlURL sub element is an absolute URL, the ful ly qualified control URL
for the service is the controlURL sub element. Otherwise (the controlURL sub element is a

http://www.ietf.org/rfc/rfc2387.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.uc-council.org/main/ID_Numbers_and_Bar_Codes.html
http://www.uc-council.org/main/ID_Numbers_and_Bar_Codes.html
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/REC-xml-names/

 — 72 —

© 2014 UPnP Forum. All Rights Reserved.

relative URL), the fully qualified control URL for the service is the URL resolved from the

controlURL sub element in accordance with c lause 5 of RFC 3986, using either the URLBase
element of the device descript ion, i f specified, or the URL from which the device description
was ret rieved as the base URL. A mult i -homed control point that sends the control message

on a part icular interface shall use the ful ly qualified control URL from the description
document received on that interface. In response, the service returns any results or errors
from the action. The effects of the act ion, i f any, is also allowed to be modeled by changes in

the variables that describe the run-t ime state of the service. When these state variables
change, events are published to all interested control points. This c lause explains the protocol
s tack for, and format of, control messages. Clause 4, “Event ing” explains event pub l icat ion.

Work ing committees and vendors are allowed to define act ions to al low control points to
determine the current value of one or more state variables. Similar to invok ing an action, a

control point sends the defined query message to the control URL for the service. In response,
the service provides the value of the variable or variables; each service is respons ible for
keeping its state table cons istent so control points can poll and receive meaningful values for

those state variables for which query act ions are defined. Clause 4, “Event ing”explains
automat ic not ificat ion of variable values.

As long as one of the discovery advert isements from a device have not expir ed, a control
point is al lowed to assume that the device and its services are available. If a device cancels
at least one of i ts advert isements, a control point shall assume the device and its services are

no longer available.

Control points and devices shall use UTF-8 for al l UPnP control messages and responses.

While UDA does define a means to invoke act ions and poll for values, UDA does not spec ify
or constrain the des ign of an API for applications running on control points; OS vendors are

al lowed to create APIs that suit their customers ’ needs.

If a large amount of data needs to be sent in assoc iat ion with an act ion (particularly i f the

amount of data is not known in advance), it is not recommended to send the data as part of a
SOAP argument or as a MIME at tachment to the SOAP message. Instead, it is recommended
that out -of-band t ransfer be used. For example, a URL could be sent as an argument value,

and an HTTP GET, PUT, or POST be used to t ransfer the data. HTTP chunked encoding can
be used when the amount of data is not known in advance.

Responses to SOAP messages during the Control phase shall be sent to the same IP address
from which the request was received. Any fully -qualified URLs contained in an act ion or
response that refer to a resource on the device itself shall have the HOST portion of the URL

set appropriately so that the resource wil l be reachable by the control point that requested the
act ion. This might be accomplished by us ing the field value specified in the HTTP HOST
header field of the control request .

Services that use complex datatype arguments shall follow the requirements in clause 2.5,
“Service descript ion”

The remainder of this clause explains in detail how control messages are formatted and sent
to devices.

 — 73 —

© 2014 UPnP Forum. All Rights Reserved.

3.1 Control protocols

To invoke act ions and poll for values, control points (and devices) use the following subset of

the overall UPnP protocol stack. (The overall UPnP protocol stack is listed at the beginning of
this document.)

Figure 3-2: — Control protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP De vice Architecture [green-bold]

SOAP [blue]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, control messages contain vendor -spec ific informat ion, e.g., argument

values. Moving down the s tack, vendor content is supplemented by informat ion from a UPnP
Forum work ing committee, e.g. , action names, argument names, variable names. Messages
from the layers above are hosted in UPnP -specific protocols, defined in this document. In turn,

the above messages are formatted using a Simple Object Access Protocol (SOAP) header
and body elements , and the messages are delivered via HTTP over TCP over IP. For
reference, colors in [square brackets] above indicate which protocol defines spec ific header

field elements in the subscription messages l isted below.

The generic requirements on HTTP usage in UPnP 2.0 (as defined in c lause 2.1, “Generic

requirements on HTTP usage” of this document) shall be fol lowed by devices and control
points that implement Control.

3.1.1 SOAP Profi le

UPnP profiles SOAP 1.1, NOT REQUIRING that all devices support all al lowed features of
SOAP 1.1, but devices and control points shall support al l mandatory features of SOAP 1.1.
The fol lowing table summarizes the UPnP profi l ing of SOAP.

 — 74 —

© 2014 UPnP Forum. All Rights Reserved.

Table 3-1: — SOAP 1.1 UPnP Profi le

UPnP Contr ol Re que s t

M andator y

Opt ional

Pr ohibite d Com m e nt

<Envelope> element M

encodingStyle attribute of <Envelope> O I f pr esent, shall be
"ht tp://schemas.xmlsoap.org/soap/encoding

/"

<Header> element (child element of

<Envelope>)

O

actor attribute of <Header> O

mustUnderstand attribute of <Header> O Only allowed if defined by t he service t o
which it is directed

encodingStyle attribute of <Header> O I f pr esent, shall be

"ht tp://schemas.xmlsoap.org/soap/encoding
/"

<Body> element (child element of <Envelope>) M Exactly one <Body> child element allowed

encodingStyle attribute of <Body> element P

root Attribute of <Body> child element O Should not be used

UPnP Contr ol Re s pons e

<Envelope> element M

encodingStyle attribute of <Envelope> O I f pr esent, shall be

"ht tp://schemas.xmlsoap.org/soap/encoding
/"

<Header> element (child element of

<Envelope>)

O

actor attribute of <Header> O

mustUnderstand attribute of <Header> O Only allowed if defined by t he service t o

which it is directed

encodingStyle Attribute of <Header> O I f pr esent, shall be
"ht tp://schemas.xmlsoap.org/soap/encoding
/"

<Body> element (child element of <Envelope>) M Exactly one <Body> child element allowed

encodingStyle attribute of <Body> element P

root attribute of <Body> child element O Should not be used

UPnP Contr ol Er r or Re s pons e

<Envelope> element M

encodingStyle attribute of <Envelope> O I f pr esent, shall be
"ht tp://schemas.xmlsoap.org/soap/encoding

/"

<Body> element (child element of <Envelope>) M Exactly one <Body> child element allowed

containing exactly one <Fault> child
element

<Fault> child element of <Body> M

<faultcode> child element of <Fault> M

<faultstring> child element of <Fault> M

<detail> child element of <Fault> M

SOAP 1.1 allows the use of footers, which are disallowed in SOAP 1.2. A UPnP message

shall not have any child elements of the <Envelope> element fol lowing the <Body> element.

 — 75 —

© 2014 UPnP Forum. All Rights Reserved.

SOAP <Header> e lement

UPnP work ing committees and the UPnP technical committee is al lowed to define allowed or

mandatory SOAP header entries that are included in the SOAP <Header> element of UPnP

act ion and UPnP action response messages. In addit ion, vendors are allowed to inc lude other

SOAP header entries in the SOAP <Header> element of UPnP action and UPnP action

response messages. If there are no SOAP header entries in a message, the SOAP <Header>

element can be omit ted.

SOAP mustUnderstand Attribute of <Header> e lement

The mustUnderstand att ribute shall not be added to SOAP <Header> element targeted at (see
also actor att ribute below) s tandardized UPnP services or targeted at control points that

interact with s tandardized UPnP services, unless its use has been explic itly defined by the
UPnP technical committee or a work ing commit tee (e.g. UPnP security).

The mustUnderstand header att ribute shall not be inc luded on non-standard header entries that
are targeted at (see also actor att ribute) s tandardized services, as this breaks the bas ic

interoperabil ity of UPnP. mustUnderstand header entries are allowed to be included on non-
standard header entries that are neither targeted at (see also actor att ribute) s tandardized

services (e.g. vendor defined services), nor targeted at control points interact ing with
s tandardized services.

Table 3-2: — mus tUnders tand a ttribute

SOAP Node Type v1.0 v1.1

Tr ansmitting Node
t argeting a s tandardized
ser vice or a control point

t hat interacts with a
s t andardized service.

The mustUnderstand attribute shall not be added to SOAP header
ent ries, unless the UPnP technical committee or a working committee has
explic itly defined its use.

Tr ansmitting Node

t argeting a vendor
spec ific s ervice or a
vendor specific SOAP

node.

Shall t ar get endpoint (see actor

c lause below).

The mustUnderstand at tribute is
a llowed t o be used at the

dis cretion of t he vendor.

I s a llowed t o target intermediaries

(see actor c lause below).

The mustUnderstand attribute is
a llowed t o be used at the discretion

of t he vendor.

Receiving Node All unknown <Header> entries are
ignored, except when explicitly
defined differently by a working

commit tee (UPnP Security).

All dev ices shall honor t he actor (see
ac tor c lause below) and

mustUnderstand attributes. If a

header entry with

mustUnderstand="1" is not
understood, t he whole mes sage fails

and a <Faultcode> element shall be
r et urned.

The SOAP mustUnderstand att ribute has a restricted type of "xsd:boolean" that takes only “0”
or “1” with “1” being t rue and “0” being false. A header entry with the mustUnderstand att ribute

set to a value of “1” shall be processed by targeted nodes or message process ing shall fai l.
Such elements are considered “mandatory header entries”. A SOAP node is cons idered to

understand a SOAP header entry i f that SOAP node understands the sem ant ics specified for
the XML expanded name of the outer-most element information item of that header entry.
Mandatory SOAP header entries are presumed to modify the semantics of other SOAP header

entries or SOAP <Body> elements and therefore shall be understood for correct semantics.

UPnP nodes receiving header entries flagged with the mustUnderstand att ribute shall process

and unders tand mandatory header entries that are targeted at that node or the node shall
NOT process the SOAP message at al l. If a node fails to process or unders tand a mandatory

entry , that node shall generate a SOAP Fault with the <faultcode> element set to

"MustUnderstand". Support for mandatory header entries assures that key message parts that
are targeted at a part icular SOAP node wil l not be erroneous ly ignored.

 — 76 —

© 2014 UPnP Forum. All Rights Reserved.

If a <Header> entry is a mandatory <Header> entry and contains entries not understood by

the targeted SOAP node, the SOAP node is al lowed to attempt processing without
unders tanding the semant ics of the extens ions. Mandatory ex tensions are not poss ible.

SOAP actor Attribute of <Header> e lement

The SOAP actor att ribute is used in SOAP 1.1 to ident ify the URI of SOAP node that is to

process the <Header> entry. All SOAP nodes play the role of

"ht tp://schemas.xmlsoap.org/soap/actor/next" , which is the first node (device or control point)
that processes the message. The lack of an actor att ribute indicates that the entry is targeted

at the destinat ion. All UPnP defined <Header> elements shall be targeted at the destinat ion,

unless explic itly defined otherwise by the UPnP technical commit tee or a working committee.
Therefore, it is recommended that the actor at t ribute is not inc luded on UPnP <Header>

entries .

<Header> entries within messages that are sent to UPnP 1.0 devices or control points shall

not be targeted at intermediaries (no actor att ribute), s ince UPnP 1.0 devices and control
points might ignore the actor att ribute and parse a <Header> entry that is not intended for

them.

If <Header> entries with an actor at t ribute are targeted at an intermediary and tagged

mustUnderstand="1", the device or control point shall not return a SOAP Fault containing the
<faultcode> element set to "MustUnderstand" due to fai lure to proces s the relevant

<Header> element targeted at another ent ity.

SOAP root Attribute

UPnP 2.0 REQUIRES that the first child element of the <Body> element shall be the root of the

RPC request . Since UPnP 2.0 defines an RPC-architec ture, there can only be one root. The

serial ization root should not use the root at tribute, but i t is NOT PROHIBITED.

SOAP encodingStyle Attribute

UPnP 2.0 REQUIRES that devices and control points shall be able to receive messages that

do not contain the SOAP encodingStyle att ribute, as well as messages that contain the SOAP
encodingStyle att ribute with value "http://schemas .xmlsoap.org/soap/encoding/". When

encodingStyle is not inc luded, the encodingStyle is

“ht tp: / /schemas.xmlsoap.org/soap/encoding/ ”.

When communicating with UPnP 1.0 devices or control points, an encodingStyle att ribute
shall be included on the SOAP <Envelope> element with value

"http://schemas .xmlsoap.org/soap/encoding/ ”. When communicating with UPnP 2.0 devices or

control points, the encodingStyle att ribute should be inc luded and, i f present, shall have the
value "ht tp://schemas.xmlsoap.org/soap/encoding/ ".

If additional encodings are needed for applicat ion data, applicat ions are allowed to use out of
band data encoding for the relevant data.

SOAP <Body> e lement

UPnP 2.0 REQUIRES a <Body> element. It contains body entries for UPnP Act ions and

Responses. The actual entries are derived from the Service Descript ion for the chosen Act ion.
A response is either successful, in which case it contains output arguments, or unsucc essful,

when it contains a <Fault> element as the only entry .

SOAP <Fault> e lement of <Body> e lement

UPnP REQUIRES the use of SOAP <Fault> elements when a fai lure response is returned.

Please see Table 3-2, “mustUnderstand at t ribute” on usage of the mustUnderstand att ribute

for how the <detail> element shall be constructed. When a <Header> element is

encountered that is a mandatory <Header> element , the control point or device shall either

http://schemas.xmlsoap.org/soap/actor/next

 — 77 —

© 2014 UPnP Forum. All Rights Reserved.

recognize the element or return the appropriate SOAP <Fault> element , containing the

<faultcode> element set to “MustUnderstand”. Backwards -compatible services shall not use

mandatory <Header> elements s ince previous UDAs allowed unknown <Header> elements

to be ignored.

Acceptable SOAP Character Encodings

All messages shall use UTF-8 serial ization. The device or control point shall indicate the

content type for al l control messages us ing the HTTP “charset” parameter.

3.2 Actions

Control points are al lowed to invoke act ions on a device's services and receive results or
errors back. The act ion, results , and errors are encapsulated in SOAP, sent via HTTP
requests , and received via HTTP responses.

3.2.1 Action invoca tion

The Simple Object Access Protocol (SOAP) defines the use of XML and HTTP for remote
procedure calls . UPnP 2.0 uses HTTP to deliver SOAP 1.1 encoded control messages to

devices and return results or errors back to control points. See clause 2.1, “Generic
requirements on HTTP usage” on use of HTTP in UPnP 2.0.

UPnP 2.0 deprecates the use of the HTTP Extens ion Framework (RFC 2774) for control.
Specifically, control points shall send a request with method POST and shall not use the M-
POST method. Devices shall not rejec t POST methods with a “405 Method Not Allowed”

HTTP status code since this causes UPnP 1.0 control points to issue a request us ing M -POST.

Below is a l ist ing of a control message sent using t he POST method fol lowed by an

explanation of the header fields and body. To invoke an action on a device's service, a control
point shall send a request with method POST in the following format. Two examples are
provided: one us ing the CONTENT-LENGTH header and one using chunked encoding (with 2

chunks). Values in i tal ics are placeholders for ac tual values.

Note: XML namespace prefixes do not have to be the spec ific examples shown below (e.g.,

“s ” or “u”); they can be any value that obeys the rules of the general XML namespace
mechanism; a device shall accept act ion invocat ions that use other legal XML namespace
prefixes.

Action invocation using the CONTENT-LENGTH header – Va lid with HTTP/1.0 or
HTTP/1.1

 POST path control URL HTTP/1.0

 HOST: hostname:portNumber

 CONTENT-LENGTH: bytes in body

 CONTENT-TYPE: text/xml; charset="utf-8"

 USER-AGENT: OS/version UPnP/2.0 product/version

 SOAPACTION: "urn:schemas-upnp-org:service:serviceType:v#actionName"

 <?xml version="1.0"?>

 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <s:Body>

 <u:actionName xmlns:u="urn:schemas-upnp-org:service:serviceType:v">

 <argumentName>in arg value</argumentName>

 <!-- other in args and their values go here, if any -->

 </u:actionName>

 </s:Body>

 </s:Envelope>

 — 78 —

© 2014 UPnP Forum. All Rights Reserved.

Action invoca tion using chunked encoding – Va l id w ith HTTP/1.1 only

 POST path control URL HTTP/1.1

 HOST: hostname:portNumber

 TRANSFER-ENCODING: "chunked"

 CONTENT-TYPE: text/xml; charset="utf-8"
 USER-AGENT: OS/version UPnP/2.0 product/version

 SOAPACTION: "urn:schemas-upnp-org:service:serviceType:v#actionName"

 Length of first chunk in hexadecimal notation

 <?xml version="1.0"?>
 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <s:Body>

 <u:actionName xmlns:u="urn:schemas-upnp-org:service:serviceType:v">

 <argumentName>in arg value</argumentName>

 <!-- other in args and their value go here, if any -->

 </u:actionName>

 </s:Body>

 Length of second chunk in hexadecimal notation

 </s:Envelope>

 0

Listed below are details for the request line, header fields, and body elements appearing in
the l ist ing above. Field names are not case sensiti ve. All HTTP field values and XML element

names are case sensitive; XML values are not case sensit ive except where noted. Except
where noted, required elements shall occur exactly once (no duplicates), and recommended
or al lowed elements shall occur at mos t once.

Request l ine

POST

Method defined by HTTP.

path control URL

Path component of the fully qualif ied control URL for this serv ice. Single, absolute path (see also RFC 2616,
c lause 3.2.2).

HTTP/1.1

The vers ion supported by the control point. (Note: the control point shall implement all mandatory components
of the

vers ion spec if ied) . Is allow ed to be any HTTP vers ion that is backw ards compatible to HTTP/1.0 (like
HTTP/1.1) .

Header fie lds

HOST

Required. Field value contains domain name or IP address and allow ed port components of fully qualif ied
control URL for this service. If the port is empty or not given, port 80 is assumed.

ACCEPT-LANGUAGE

PROHIBITED. The A CCEPT-LA NGUAGE header f ield shall not be used in control messages.

CONTENT-LENGTH

Required if Or igin Server does not c lose the sess ion after sending the ac tion invocation A ND Or igin Server
does not send the action invocation using chunked encoding.

PROHIBITED if Or igin Server sends the action invocation using chunked encoding. allowed otherwise.

Field value specif ies the length of the body in bytes. Integer.

 — 79 —

© 2014 UPnP Forum. All Rights Reserved.

TRANSFER-ENCODING

A llow ed for HTTP/1.1 and above. Field value spec if ies w hether the action invocation is chunked encoded by
hav ing f ield value “chunked”. shall not be specif ied if CONTENT-LENGTH header f ield is present.

CONTENT-TYPE

Required. Field value shall be “text/xml; charset="utf -8" ” .

USER-AGENT

A llow ed. Spec if ied by UPnP vendor. Str ing. Field value shall begin w ith the follow ing “product tokens” (defined
by HTTP/1.1) . The f irs t product token identifes the operating system in the form OS name/OS vers ion , the
second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token identifes the product

us ing the form product name /product vers ion . For example, “USER-A GENT: unix/5.1 UPnP/2.0
MyProduct/1.0”.

SOAPACTION

Required header f ield defined by SOA P. Field value shall be the serv ice type, hash mark, and name of ac tion
to be invoked, all enclosed in double quotes. The spec if ied serv ice vers ion shall indicate the vers ion of the
serv ice that the control point w ants to use w hile invoking the action. Its value may be any vers ion of the

serv ice type in w hich the spec if ied action w as def ined. When a control point invokes an action that has been
defined in vers ion K of a serv ice, vers ion number v shall be equal or higher than K. For example, if an ac tion
has been def ined in vers ion 2 of a service, it shall not be invoked us ing v=1. Furthermore; version v shall be a
vers ion that is supported by the dev ice. For example, for dev ices that suppor t only vers ion 1 of a serv ice, v
shall be 1. Single URI.

Body

<Envelope>

Required element def ined by SOA P. xmlns namespace attr ibute shall be
"http://schemas.xmlsoap.org/soap/envelope/". Shall include encodingSty le attr ibute w ith value

"http://schemas.xmlsoap.org/soap/encoding/" . A receiver shall generate a fault if it encounters a message

w hose <document> element has a local name of " Envelope" but a namespace name that is not
"http://schemas.xmlsoap.org/soap/envelope/". Contains the following sub elements:

<Body>

Required element def ined by SOA P. Shall be qualif ied w ith SOA P namespace. Contains the follow ing
entry:

<actionName>

Required. Name of element is name of ac tion to invoke. xmlns namespace attr ibute shall be
the serv ice type enc losed in double quotes. The vers ion spec if ied shall be the same vers ion

spec if ied in the SOA PA CTION header f ield. Case sens itive. shall be the f irs t child element of
<Body>. Contains the following, ordered sub element(s):

<argumentName>

Required if and only if action has in arguments. Value to be passed to ac tion. Repeat

once for each in argument. (An element name is not qualif ied by a namespace;
element nes ting contex t is suff ic ient.) Case sensit ive. Single data type as def ined by
UPnP serv ice descr iption. Every “ in” argument in the definit ion of the ac tion in the
serv ice descr iption shall be inc luded, in the same order as spec if ied in the serv ice
desc ription (SCPD) that is available from the device .

If the CONTENT-TYPE header field spec ifies an unsupported field value (oth er then “text /xml”)
the device shall return a “415 Unsupported Media Type” HTTP s tatus code.

For future extens ibi lity and according to the requirements in clause 2.7, “Non-standard vendor
extensions ” and clause 2.8, “UPnP Device Schema”, when processing XML like the lis ting
above, devices and control points shall ignore: (a) any unknown elements and their sub

elements or content , and (b) any unknown at t ributes and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions ” and c lause
2.8, “UPnP Device Schema”, control points and devices shall ignore any XML comments or

XML process ing ins truct ions embedded in ac t ion requests that th ey do not unders tand.

When the value of any argument contains one or more characters reserved as markup (such

as ampersand (“&”) or less than (“<”)), then the tex t shall be escaped in accordance with the
provis ions of clause 2.4 of the XML specificat ion and each such character replaced with the

 — 80 —

© 2014 UPnP Forum. All Rights Reserved.

equivalent numeric representat ion or s tring (such as “&” or “< ”). Such characters

appearing in URLs are also allowed to be percent -encoded in accordance with the URL
percent -encoding rules spec ified in c lauses 2.1 and 2.4 of RFC 3986.

Note that because HTTP 1.1 allows use of chunked encoding, some control points are allowed
to send the action request using chunked encoding if the POST method specifies HTTP 1.1.
Device implementations that only support HTTP/1.0 and thus do not support receiving action

requests us ing chunked encoding shall return a “505 HTTP Version Not Supported” HTTP
status code. Control points shall not make HTTP 1.1 chunked POST requests to devices that
are known to support only HTTP 1.0.

On a mult i -homed control point , all ful ly qualified URLs contained in the act ion arguments that
refer to resources on the control point shall be reachable on the interface on which the action

request is sent .

3.2.2 Action Response

The service shall complete invok ing the action and respond within 30 seconds, inc luding

expected t ransmission t ime (measured from the t ime the action message is t ransmitted unt il
the time the assoc iated response is received). Act ions that take longer than this should be
defined to return early and send an event when complete. If the service fails to respond within

this t ime, what the control point should do is applicat ion-spec ific . A multi -homed device shall
send the response on the same UPnP -enabled interface on which the request was recei ved.
The service shall send a successful complet ion response us ing the following format. The

fol lowing two examples il lust rate an action response using the CONTENT-LENGTH header
and an action response using chunked encoding. The values in italics are placeholders for
ac tual values.

Note; XML namespace prefixes do not have to be the spec ific examples shown below (e.g.,
“s ” or “u”); they can be any value that obeys the rules of the general XML namespace

mechanism; control points shall accept act ion responses that use other legal XML namespace
prefixes.

Action response using the CONTENT-LENGTH header – Va l id w ith HTTP/1.0 or HTTP/1.1

 HTTP/1.0 200 OK

 CONTENT-TYPE: text/xml; charset="utf-8"

 DATE: when response was generated
 SERVER: OS/version UPnP/2.0 product/version
 CONTENT-LENGTH: bytes in body <?xml version="1.0"?>

 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <s:Body>

 <u:actionNameResponse xmlns:u="urn:schemas-upnp-org:service:serviceType:v">

 <argumentName>out arg value</argumentName>

 <!-- other out args and their values go here, if any -->

 </u:actionNameResponse>

 </s:Body>

 </s:Envelope>

 — 81 —

© 2014 UPnP Forum. All Rights Reserved.

Action response using chunked encoding – Va l id w ith HTTP/1.1 only

 HTTP/1.1 200 OK

 TRANSFER-ENCODING: "chunked"

 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 SERVER: OS/version UPnP/2.0 product/version

 Length of first chunk in hexadecimal notation

 <?xml version="1.0"?>

 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:actionNameResponse xmlns:u="urn:schemas-upnp-org:service:serviceType:v">

 <argumentName>out arg value</argumentName>
 <!-- other out args and their values go here, if any -->
 </u:actionNameResponse>

 </s:Body>
 </s:Envelope>

 0

Listed below are details for the response l ine, header fields, and body elements appearing in
the l ist ing above. Field names are not case sensitive. All HTTP field values and XML element

names are case sensitive; XML values are not case sensit ive except where noted. Except
where noted, required elements shall occur exactly once (no duplicates), and recommended
or al lowed elements are al lowed to occur at most once.

Response l ine

HTTP/1.1

The highest vers ion supported by the or igin server that is compatible w ith the control point that issued the
request.

For example, if the control point spec if ied suppor t for HTTP/1.0 in the reques t, the res ponse shall contain
HTTP/1.0.

200 OK

HTTP def ined s tatus code indicating that no HTTP er rors were detected.

Header fie lds

CONTENT-LANGUAGE

PROHIBITED. The CONTENT-LA NGUA GE header f ield shall not be used in control messages.

CONTENT-LENGTH

Required if Or igin Server does not c lose the sess ion after sending the response A ND Or igin Server does not
send the response using chunked encoding.

PROHIBITED if Or igin Server sends the response using chunked encoding. Allowed otherwise.

Field value specif ies the length of the body in bytes. Integer.

TRANSFER-ENCODING

A llow ed for HTTP/1.1 and above. Field value spec if ies w hether the response is chunked encoded by having
f ield value “chunked” (in the example, the entire body is sent in a s ingle chunk) . Shall not be spec if ied if
CONTENT-LENGTH header f ield is present.

CONTENT-TYPE

Required. Field value shall be “text/xml; charset="utf -8" ” .

DATE

Recommended . Field value contains date w hen response w as generated. “rfc1123-date” as def ined in RFC
2616.

 — 82 —

© 2014 UPnP Forum. All Rights Reserved.

SERVER

Required. Spec if ied by UPnP vendor. Str ing. Field value shall begin w ith the follow ing “product tokens”
(defined by HTTP/1.1) . The f irst produc t token identifes the operating system in the form OS name /OS version,
the second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token identifes the
product us ing the form product name /product vers ion. For example, “SERV ER: unix /5.1 UPnP/2.0

MyProduct/1.0”.

Body

<Envelope>

Required element defined by SOA P. xmlns namespace attr ibute shall be
"http://schemas.xmlsoap.org/soap/envelope/". shall inc lude encodingStyle attr ibute w ith value

"http://schemas.xmlsoap.org/soap/encoding/" . A receiver shall generate a fault if it encounters a message
w hose document element has a local name of "Envelope" but a namespace name that is not
"ht tp://schemas.xmlsoap.org/soap/envelope/" . Contains the following sub elements:

<Body>

Required element def ined by SOA P. Shall be qualif ied w ith SOA P namespace. Contains the follow ing
entry:

<actionNameResponse>

Required. Name of element is ac tion name prepended to Response. xmlns namespace
attribute shall be service type enc losed in double quotes. Devices that support the same
ac tion in multiple namespaces shall use the same namespace in the response as w as used in
the ac tion invocation. For example, if an action was invoked using namespace:

urn:schemas-upnp-org:service:ContentDirectory:2

The response shall also use namespace:

urn:schemas-upnp-org:service:ContentDirectory:2

Case sensit ive. shall be the f irst sub element of <Body>. Contains the following sub element:

<argumentName>

Required if and only if action has out arguments. Value returned from ac tion. Repeat

once for each out argument. If ac tion has an argument marked w ith the <retval/>
element, this argument shall be the f irst element. (An element name not qualif ied by
a namespace; element nes ting context is suff icient.) Case sens it ive. Single data type
as defined by UPnP serv ice descr iption. Every out argument in the definit ion of the

ac tion in the serv ice description shall be included, in the same order as specif ied in
the service description (SCPD) available from the device .

For future extens ibi lity and according to the requirements in clause 2.7, “Non-standard vendor
extensions ” and clause 2.8, “UPnP Device Schema”, when processing XML like the lis ting
above, devices and control points shall ignore: (a) any unknown elements and their sub

elements or content , and (b) any unknown at t ributes and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions ” and c lause

2.8, “UPnP Device Schema”, control points and devices shall ignore any XML comments or
XML process ing ins truct ions embedded in ac t ion responses that t hey do not unders tand.

On a mult i -homed device, all ful ly qualified URLs contained in response arguments that refer
to resources on the device shall be reachable on the UPnP -enabled interface on which the
response message is sent .

3.2.3 UPnP Action Schema

The UPnP Action Schema defines the s t ructures and data types used in the body of UPnP
act ions and act ion responses. As explained with the UPnP Device and Service Schemas, the

UPnP Act ion Schema is written in XML syntax according to the convent ions of XML Schema
(Part 1: Structures, Part 2: Datatypes). The UPnP Act ion Schema is defined within a UPnP
service template; however, the schema shall conform to the format as defined in c lause B.3,

“UPnP Control Schema”. The elements it defines are used in ac t ions and act ion responses.

 — 83 —

© 2014 UPnP Forum. All Rights Reserved.

3.2.4 Recommendations and additional requirements

Control points and devices shall ignore any XML comments or XML processing inst ruct ions

they may receive that they do not unders tand.

XML namespace prefixes do not have to be the specific examples given above (e.g., “s ” or

“u”); they can be any value that obeys the rules of the general XML namespace mechanism;
control points shall accept responses that use other lega l XML namespace prefixes.

If an act ion has no “out” arguments, i t is valid to combine the opening and c losing XML tags
(e.g. , “<actionNameResponse/> ” instead of

“<actionNameResponse></actionNameResponse>”).

When the value of any argument contains one or more characters reserved as markup (such

as ampersand (“&”) or less than (“<”)), the text shall be escaped in accordance with the
provis ions of clause 2.4 of the XML specificat ion and each such character replaced with the
equivalent numeric representat ion or string (such as “&” or “< ”). Such characters

appearing in URLs are also allowed to be percent -encoded in accordance with the URL
percent -encoding rules spec ified in c lauses 2.1 and 2.4 of RFC 3986.

3.2.5 Action e rror response

Where the normal outcome of process ing a SOAP message would have resulted in the
t ransmission of a SOAP response, but rather a SOAP Fault is generated instead, a receiver
shall t ransmit a SOAP Fault message in place of the response. If the service encounters an

error while invok ing t he action sent by a control point, the service shall send a response
within 30 seconds, inc luding expected t ransmiss ion t ime. Out arguments shall only be used to
return data and shall not be used to convey error informat ion. Error responses shall be sent

us ing the fol lowing format. The following two examples il lust rate an error response using the
CONTENT-LENGTH header and an error response us ing chuncked encoding. Values in
i tal ics are placeholders for ac tual values.

Note: XML namespace prefixes do not have to be the spec ific examples shown below (e.g.,
“s ” or “u”); they can be any value that obeys the rules of the general XML namespace

mechanism; control points shall error responses that use other legal XML namespace prefixes.

Error response using the CONTENT-LENGTH header – Valid using HTTP/1.0 and

HTTP/1.1

 HTTP/1.0 500 Internal Server Error

 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 SERVER: OS/version UPnP/2.0 product/version
 CONTENT-LENGTH: bytes in body <?xml version="1.0"?>

 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <s:Fault>

 <faultcode>s:Client</faultcode>

 <faultstring>UPnPError</faultstring>
 <detail>

 <UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
 <errorCode>error code</errorCode>
 <errorDescription>error string</errorDescription>

 </UPnPError>

 </detail>
 </s:Fault>

 </s:Body>
 </s:Envelope>

 — 84 —

© 2014 UPnP Forum. All Rights Reserved.

Error response using chunke d encoding – Va l id using HTTP/1.1 only

 HTTP/1.1 500 Internal Server Error

 TRANSFER-ENCODING: "chunked"

 CONTENT-TYPE: text/xml; charset="utf-8"
 DATE: when response was generated
 SERVER: OS/version UPnP/2.0 product/version

 Length of first chunk in hexadecimal notation

 <?xml version="1.0"?>
 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <s:Fault>

 <faultcode>s:Client</faultcode>

 <faultstring>UPnPError</faultstring>
 <detail>

 <UPnPError xmlns="urn:schemas-upnp-org:control-1-0">
 <errorCode>error code</errorCode>
 <errorDescription>error string</errorDescription>

 </UPnPError>
 </detail>
 </s:Fault>

 </s:Body>

 Length of second chunk in hexadecimal notation

 </s:Envelope>

 0

Listed below are details for the response l ine, header fields, and body elements appearing in
the lis ting above. HTTP field names are not case sens it ive. All HTTP field values and XML
element names are c ase sensit ive; XML values are not case sensit ive except where noted.

Except where noted, required elements shall occur exact ly once (no duplicates), and
recommended or al lowed elements are al lowed to occur at most once.

Response l ine

HTTP/1.1

The highest v ers ion supported by the or igin server that is compatible w ith the control point that issued the
request.

For example, if the control point spec if ied suppor t for HTTP/1.0 in the reques t, the response shall contain
HTTP/1.0.

500 Internal Server Error

HTTP def ined s tatus code indicating that an error has been detected.

Header fie lds

CONTENT-LANGUAGE

PROHIBITED. The CONTENT-LA NGUA GE header f ield shall not be used in control messages.

CONTENT-LENGTH

Required if Or igin Server does not c lose the sess ion after send ing the response A ND Or igin Server does not
send the response using chunked encoding.

PROHIBITED if Or igin Server sends the response using chunked encoding. Allowed otherwise.

Field value specif ies the length of the body in bytes. Integer.

TRANSFER-ENCODING

A llow ed for HTTP/1.1 and above. Field value spec if ies w hether the response is chunked encoded by having
f ield value “chunked” (in the example above the body is sent in 2 chunks). shall not be specif ied if CONTENT-
LENGTH header f ield is present.

 — 85 —

© 2014 UPnP Forum. All Rights Reserved.

CONTENT-TYPE

Required. Field value shall be “text/xml; charset="utf -8" ” .

DATE

Recommended . Field value contains date w hen response w as generated. “rfc1123-date” as def ined in RFC
2616.

SERVER

Required. Spec if ied by UPnP vendor. Str ing. Field value shall begin w ith the follow ing “product tokens”
(defined by HTTP/1.1) . The f irst produc t token identifes the operating system in the form OS name /OS version,
the second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token identifes the

product us ing the form product name /product vers ion. For example, “SERV ER: unix /5.1 UPnP/2.0
MyProduct/1.0”.

Body

<Envelope>

Required element defined by SOA P. xmlns namespace attr ibute shall be
"http://schemas.xmlsoap.org/soap/envelope/". Shall include encodingStyle attr ibute w ith value
"http://schemas.xmlsoap.org/soap/encoding/" . A receiver shall generate a fault if it encounters a message

w hose document element has a local name of "Envelope" but a namespace name that is not
"ht tp://schemas.xmlsoap.org/soap/envelope/" . Contains the following sub elements:

<Body>

Required element def ined by SOA P. Shall be qualif ied w ith SOA P namespace. Contains the follow ing
sub element:

<Fault>

Required element defined by SOA P. Er ror encountered w hile invoking action. Shall be
qualif ied with SOAP namespace. Contains the following sub elements:

<faultcode>

Required element def ined by SOA P. Value shall be qualif ied w ith the SOA P
namespace. Shall be “Client” for DCP spec ific errors. When mandatory header XML
elements wit hin the SOAP header cannot be processed it shall be the SOAP fault
code “MustUnderstand”.

<faultstring>

Required element defined by SOAP. Shall be “UPnPError” for DCP specific errors.

<detail>

Required element defined by SOAP. Contains the following subelement:

<UPnPError>

Required element for DCP spec if ic errors. Is allow ed to be empty for other
er rors. Contains the following subelements:

<errorCode>

Required element defined by UDA . Code identifying w hat error w as

encountered. See Table 3-3 , “UPnP Defined Action error codes” for
values. Integer.

<errorDescription>

Recommended element def ined by UDA . Short descr iption. See
Table 3-3, “UPnP Def ined Action error codes” for recommended

values ; other values Is allow ed to be used by vendors. Human-
readable string. Recommended < 256 characters.

The fol lowing table summarizes defined error types and the corresponding value for the
<errorCode> and <errorDescription> elements .

Table 3-3: — UPnP Defined Action e rror codes

Er r or Code e r r or De s cr ipt ion De s cr ipt ion

 — 86 —

© 2014 UPnP Forum. All Rights Reserved.

Er r or Code e r r or De s cr ipt ion De s cr ipt ion

401 I nvalid Action No ac tion by t hat name at this s ervice.

402 I nvalid Args Could be any of the following: not enough in args, args in the wrong
or der, one or more in args are of t he wrong data type. Additionally ,

t he UPnP Certification Test Tool s hall r eturn the following warning
message if there are too many in args: ‘Sending t oo many in args is

not r ecommended and may cause unexpected r esults .’

403 (Do Not Use) (This code has been deprecated.)

501 Ac t ion Failed I s a llowed t o be returned if current state of service prevents invoking
t hat action.

600 Ar gument Value

I nvalid

The ar gument value is invalid

601 Ar gument Value Out
of Range

An ar gument value is les s than t he minimum or more t han the
max imum v alue of the allowed value range, or is not in t he allowed
value lis t.

602 Opt ional Ac tion Not

I mplemented

The r equested action is optional and is not implemented by t he device.

603 Out of Memory The dev ice does not have sufficient memory available t o complete t he
ac t ion. This is a llowed to be a temporary condition; the control point

is a llowed t o choose to r etry t he unmodified request again lat er and it
is expected to succeed if memory is available.

604 Human I ntervention
Required

The dev ice has encountered an error condition which it cannot r esolve
it self and r equired human intervention such as a r eset or power cycle.

See t he device display or documentation for further guidance.

605 St r ing Argument Too
Long

A s t ring argument is too long for the device t o handle properly.

606-6124 Reserved These ErrorCodes are reserved for UPnP DeviceSecurity.

613-699 TBD Common action errors. Defined by UPnP Forum Technical Committee.

700-799 TBD Ac t ion-specific errors defined by UPnP Forum working committee.

800-899 TBD Ac t ion-specific errors for non-standard actions. Defined by UPnP

vendor.

3.2.6 UPnP Error Schema

The UPnP Error Schema defines the st ructures and data types used in the body of UPnP error

messages. As with the UPnP Device and Service Schemas, the UPnP Error Schema is written
in XML syntax and according to the convent ions of XML Schema (Part 1: Structures, Part 2:
Datatypes). clause B.4, “UPnP Error Schema” contains a l ist ing of this schema. The elements

i t defines are used in error messages.

For future extens ibi lity and according to the requirements in clause 2.7, “Non-standard vendor

extensions ” and clause 2.8, “UPnP Device Schema”, when processing XML like the lis ting
above, devices and control points shall ignore: (a) any unknown elements and their sub
elements or content , and (b) any unknown at t ributes and their values.

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions ” and c lause
2.8, “UPnP Device Schema”, control points and devices shall ignore any XML comments or

XML process ing ins t ruct ions embedded in UPnP device and service descriptions that they do
not unders tand.

XML namespace prefixes do not have to be the specific examples given above (e.g., “s ” or
“u”); they can be any value that obeys the rules of the general XML namespace mechanism;
control points shall accept responses that use other legal XML namespace prefixes.

 — 87 —

© 2014 UPnP Forum. All Rights Reserved.

3.3 Query for va riable

The QueryStateVariable act ion has been deprecated by the UPnP Forum and shall not be

used by control points except in l imited test ing scenarios . Work ing committees and vendors
shall explicitly def ine act ions for querying of state variab les for which this capabili ty is desired.
Such explicit query ac tions is al lowed to inc lude multiple state variables, if desired. For the

ful l def init ion of QueryStateVariable see the UPnP 1.0 spec ification.

3.4 Re fe rences

RFC 1123, Inc ludes format for dates, for, e.g. , HTTP DATE header field. Available at :

ht tp: / /www/ iet f.org/rfc /rfc1123.tx t.

RFC 2616, HTTP: Hypertex t Transfer Protocol 1.1. Available at :

ht tp: / /www. iet f.org/rfc /rfc2616.tx t.

RFC 2774, HTTP Extens ion Framework. Available at : ht tp://www. iet f.org/rfc /rfc2774.txt.

RFC 3986, Uniform Resource Ident ifiers (URI): Generic Syntax.Available at :
ht tp: / /www. iet f.org/rfc /rfc3986.tx t.

SOAP, Simple Object Access Protocol. Available at : ht tp:/ /www.w3.org/TR/2000/NOTE -SOAP-
20000508.

XML, Extensible Markup Language. Available at : ht tp: //www.w3.org/XML.

XML Schema (Part 1: Struc tures, Part 2: Datatypes) , Available at :
ht tp: / /www.w3.org/TR/xmlschema-1, ht tp: //www.w3.org/TR/xmlschema-2.

4 Eventing

Eventing is Step 4 in UPnP network ing. Event ing comes after addressing (Step 0) where
devices get a network address, after discovery (Step 1) where control points find interesting

device(s), and after description (Step 2) where control points learn about device capab il it ies.
Eventing is int imately l inked with control (Step 3) where control points send act ions to devices.
Through event ing, control points listen to state changes in device(s). Control and event ing are

complementary to presentation (Step 5) where control points display a user interface provided
by device(s).

After a control point has (1) discovered a device and (2) ret rieved a description of the device
and its services, the control point has the essent ials for event ing. As clause 2, “Description”
explains, a UPnP service descript ion includes a l ist of act ions the service responds to and a

l ist of variables that model the state of the service at run time. If one or more of these s tate
variables are evented, then the service publishes updates when these variables change, and
a control point is al lowed to subscribe to receive this informat ion. Two types of event ing are

supported by this specification: unicast event ing as found in ver s ion 1.0 of the UPnP
spec ification where a control point is al lowed to subscribe to receive variable updates; and
mult icast event ing where variables is allowed to be defined as multicast events and can be

additionally sent over UDP to any listening device on the mult icast event address. This form
of event ing is useful when events which are not relevant to a spec ific UPnP interaction should
be delivered to control points to inform users, and when mult iple controlled devices want to

inform mult iple other cont rolled devices. Throughout this c lause, publisher refers to the
source of the events (typically a device's service), subscriber refers to the dest inat ion of
events (typically a control point), and the term receiver refers to the l istener of multicast

events (typically a control point , but is al lowed to also be a control led device).

http://www/ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2774.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/XML
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2

 — 88 —

© 2014 UPnP Forum. All Rights Reserved.

4.1 Unicast eventing

Figure 4-1: — Unicast eventing a rchitecture

root device

service

device

service

control point 1

SID1 subscribe

renewal:SID1

cancel:SID1

event:SID1

control point 2

Previously subscribed

SID0

event:S
ID

0

subscribeRsp:SID1

renewalRsp:SID1

To subscribe to eventing, a subscriber sends a subscription message. If the subscription is
accepted, the publisher responds with a durat ion for the subscription. To keep the
subscript ion act ive, a subscriber shall renew its subscript ion before the subscript ion expires.

When a subscriber no longer needs event ing from a publisher, the subscriber should cancel
i ts subscript ion. This clause explains subscript ion, renewal, and cancellation messages in
detail below.

The publisher notes changes to state variables by sending event messages . Event messages
contain the names of one of more state variables and the current value of those variables,

expressed in XML. A spec ial init ial event message is sent when a subscriber first subscribes;
this event message contains the names and values for al l evented vari ables and allows the
subscriber to initialize its model of the state of the service. To support scenarios with mult iple

control points, event ing can be used to keep interested control points informed about the
effec ts of act ions performed by other control points or us ing other mechanisms for device
control (such as front panel controls). All subscribers are sent all event messages,

subscribers receive event messages for all evented variables (not just some), and event
messages are sent no matter why the state variable changed (either in response to a
requested act ion or because the state the service is modeling changed). This clause explains

the format of event messages in detail below.

Some state variables are allowed to change value too rapidly for eventing to be useful. One

alternative is to fi lter, or moderate, the number of event messages sent due to changes in a
variable's value. Some s tate variables are allowed to contain values too large for event ing to
be useful; for this, or other reasons, a service is al lowed to designate one or more state

variables as non evented and never send event messages to subscribers. To determine the
current value for such non-evented variables, control points shall poll the service explic it ly,
presuming that an act ion is provided to obtain the value of the state variable. This c lause

explains how variable event ing is described within a service descript ion.

To send and receive subscript ion and event messages, control points and services use the

fol lowing subset of the overal l UPnP protocol s tack. (The overall UPnP protocol s tack is l isted
at the beginning of this document.)

 — 89 —

© 2014 UPnP Forum. All Rights Reserved.

Figure 4-2: — Unicast eventing protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP De vice Architecture [green-bold]

GENA [navy-bold]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, subscript ion and event messages contain vendor -specific informat ion l ike

URLs for subscript ion and durat ion of subscript ions or specific variable value s. Moving down

the stack, vendor content is supplemented by informat ion from a UPnP Forum working
committee, like service ident ifiers or variable names. Messages from the layers above are
hosted in UPnP-spec ific protocols , defined in this document. In turn, the above messages are

delivered via HTTP that has been extended using addit ional methods and header fields. The
HTTP messages are delivered via TCP over IP. For reference, colors in [square brackets]
above indicate which protocol defines spec ific header fields in the subscript ion messages

l is ted below.

The remainder of this c lause first explains subscript ion, including details of subscription

messages, renewal messages, and cancellat ion messages. Second, it explains in detail how
event messages are formatted and sent to control points, and the initial event message.
Finally , i t explains the UPnP Device and Service Schemas as they pertain to event ing.

The generic requirements on HTTP usage in UPnP 2.0 (as defined in c lause 2.1, “Generic
requirements on HTTP usage” of this document) shall be fol lowed by devices and control

points that implement event ing.

Services that use evented complex datatypes shall follow the requirements in clause 2.5,

“Service descript ion”.

4.1.1 Subscription

A service has event ing if and only if one or more of the s tate variables are evented.

If a service has event ing, it publishes event messages to interested subscribers. The
publisher maintains a list of subscribers, keeping for each subscriber the following information.

unique subscription identif ier

Required. Shall be unique over the lifetime of the subscr iption, how ever long or shor t that may be. Generated
by publisher in response to subscr iption message. RECOMMEND universally -unique identif iers to ensure
uniqueness. Single URI.

delivery URL for event messages

Required. Provided by subscriber in subscription message. Single URL.

event key

Required. Key is 0 for init ial event message. Key shall be sequentially numbered for each subsequent event
message; subscr ibers can ver ify that no event messages have been los t if the subscr iber has received
sequentially numbered event keys. Shall w rap from 4294967295 to 1 (32-bit unsigned dec imal integer).
Implementations are allowed to include leading “0” characters in the event key, which shall be ignored.

subscription duration

Required. A mount of t ime, or duration until subscription expires. Single integer, preceded in subscr iption
messages by the keyw ord “ Second-” (no spaces) . UPnP 1.0 def ines the use of the keyw ord inf inite instead of
an integer . This keyw ord is deprecated in UPnP 2.0 (it leads to problems if control points disappear w ithout

unsubscribing and is hardly used) : UPnP 2.0 control points shall not subscribe us ing keyw ord infin ite , UPnP
2.0 devices shall not set ac tual subscription durations to “ infinite”. The presence of inf inite in a reques t shall

 — 90 —

© 2014 UPnP Forum. All Rights Reserved.

be s ilently ignored by a UPnP 2.0 dev ice (the presence of inf inite is handled by the dev ice as if the TIMEOUT
header f ield in a request was not present) . The keyword infinite shall not be returned by a UPnP 2.0 device.

HTTP version supported by the subscriber

Required if the publisher supports chunked encoding of event notif ication messages, so that chunked
messages are not sent to subscribers that do not support them.

A multi-homed publisher shall also maintain information on the UPnP-enabled interface on w hich each subscription message
w as received. The same interface shall be used w hen publishing event messages to the corresponding subscriber.

The publisher should accept as many subscript ions as it can reasonably maintain, tak ing into

account that the number of event messages that need to be delivered per event, which
increases l inearly with the number of subscript ions.

The l ist of subscribers is updated via subscript ion, renewal, and cancellat ion messages
explained immediately below and event messages explained later in thi s c lause.

To subscribe to event ing for a service, a subscriber sends a subscript ion message containing
a URL for the publisher, a service identifier for the publisher, and a delivery URL for event
messages. The subscript ion message MAY also inc lude a requested durat ion for the

subscript ion. The URL and service identifier for the publisher come from a description
message. As clause 2, “Descript ion” explains , a descript ion message contains a device
description. A device description contains (among other things), for each service, an event ing

URL (obtained from the eventSubURL element) and a service identifier (in the serviceId
element); these correspond to the URL and servic e ident ifier for the publisher, respect ively. If
eventSubURL is an absolute URL, the ful ly qualified event subscript ion URL is the

eventSubURL. If eventSubURL is a relat ive URL, the fully qualified event subscription URL is
the URL resolved from eventSubURL in accordance with c lause 5 of RFC 3986, using either
the URLBase element, i f specified, or the URL from which the device descript ion was

ret rieved as the base URL. If the eventSubURL is empty, no subscriptions are possible. The
ful ly qualified event subscription URL for the publisher shall be unique to a particular service
within this device. A mult i -homed control point that sends the subscription message on a

part icular UPnP-enabled interface shall use the ful ly qualified event ing URL from the
description document received on that UPnP -enabled interface. The delivery URL contained
in the subscription message shall be reachable on that interface.

The subscript ion message is a request to receive all event messages. No mechanism is
provided to subscribe to event messages on a variable-by-variable bas is. A subscriber is sent

al l event messages from the service. This is one fac tor to be considered when des igning a
service.

If the subscript ion is accepted, the publisher responds with a unique ident ifier for thi s
subscript ion and a durat ion for this subscript ion. A durat ion should be chosen that matches
assumpt ions about how frequent ly control points are removed from the network ; i f control

points are removed every few minutes, then the duration should be similarly short, al lowing a
publisher to rapidly deprecate any expired subscribers; i f control points are expected to be
semi-permanent, then the durat ion should be very long, minimiz ing the process ing and t raffic

assoc iated with renewing subscriptions.

As soon as possible after the subscription is accepted, the publisher also sends the first , or

init ial event message to the subscriber. This message includes the names and current values
for al l evented variables. (The data type and range for each variable is described in a service
description. Clause 2, “Description” explains this in more detail.) This init ial event message is

always sent, even if the control point unsubscribes b efore it is delivered. The device shall
insure that the control point has received the response to the subscription request before
sending the init ial event message, to insure that the control point has received the SID

(subscription ID) and can thereby correlate the event message to the subscription.

To keep the subscription active, a subscriber shall renew its subscription before the

subscript ion expires by sending a renewal message. The renewal message is sent to the
same URL as the subscription message, but the renewal message does not inc lude a delivery

 — 91 —

© 2014 UPnP Forum. All Rights Reserved.

URL for event messages; instead the renewal message includes the subscript ion identifier.

The response for a renewal message is the same as one for a subscription message.

If a subscription expires, the subscription ident ifier becomes invalid, and the publisher stops

sending event messages to the subscriber and can c lean up its list of subscribers. If the
subscriber t ries to send any message other than a subscript ion message, the publisher shall
rejec t the message because the subscript ion ident ifier is invalid.

When a subscriber no longer needs event ing from a particular service, the subscriber should
cancel its subscription. Canceling a subscription generally reduces service, control point, and

network load. If a subscriber is removed abrupt ly from the network, it might be impossible to
send a cancellat ion message. As a fallback, the subscription wil l eventually expire on its own
unless renewed.

It is st rongly recommended that subscribers monitor discovery messages from the publisher.
If the publisher cancels its advert isements or i f the value of the BOOTID.UPNP.ORG is

increased without a prior ssdp:update message with a matching NEXTBOOTID.UPNP.ORG
field value, subscribers shall assume that their subscriptions have been cancelled.

Below is an explanat ion of the specific format of requests, responses, and errors for
subscription, renewal, and cancellat ion messages.

4.1.2 SUBSCRIBE w ith NT and CALLBACK

For each service in a device, a descript ion message contains an event subscript ion URL
(obtained from the eventSubURL sub element of service element in the device description)
and the UPnP service identifier (serviceId sub element in service element in device

description). To subscribe to event ing for a part icular service, a subscript ion message is sent
to that service's fully qualified event subscription URL. If eventSubURL is an absolute URL,
the ful ly qualified event subscript ion URL is the eventSubURL. Otherwise, i f eventSubURL is

a relative URL, the ful ly qualified event subscription URL is the URL resolved from
eventSubURL in accordance with clause 5 of RFC 3986, using either the URLBase element, i f
spec ified, or the URL from which the device descript ion was ret rieved as the base URL. The

message contains that service's identifier as well as a delivery URL for event messages. A
mult i-homed control point that sends the subscription message on a particular UPnP -enabled
interface shall use the ful ly qualified event ing URL from the description document received on

that interface. The delivery URL contained in the subscript ion message shall be reachable on
that interface. A subscription message MAY also inc lude a requested subscription durat ion.

To subscribe to event ing for a service, a subscriber shall send a request with method
SUBSCRIBE and NT and CALLBACK header fields in the fol lowing format. Values in i tal ics
are placeholders for ac tual values.

 SUBSCRIBE publisher path HTTP/1.1
 HOST: publisher host:publisher port
 USER-AGENT: OS/version UPnP/2.0 product/version

 CALLBACK: <delivery URL>

 NT: upnp:event
 TIMEOUT: Second-requested subscription duration

 STATEVAR: CSV of Statevariables

(No body for request with method SUBSCRIBE, but note that the message shall have a blank
l ine fol lowing the las t HTTP header field.)

Listed below are details for the request line and header fields appearing in the l ist ing above.
Field names are not case sens it ive. All field values are case sens it ive except where noted.

Request l ine

SUBSCRIBE

Method to init iate or renew a subscription.

 — 92 —

© 2014 UPnP Forum. All Rights Reserved.

publisher path

Path component of the fully qualif ied event subscr iption URL. Single, absolute path (see also RFC 2616,
c lause 3.2.2).

HTTP/1.1

The vers ion supported by the control point. (Note: the control point shall implement all mandatory components
of the

version specif ied). MAY be any HTTP version that is backwards compatible to HTTP/1.0 (like HTTP/1.1).

Header fie lds

HOST

Required. Field value contains domain name or IP address and optional por t components of the fully qualif ied
event subscription URL. If the por t is missing or empty, port 80 is assumed.

USER-AGENT

A llow ed. Spec if ied by UPnP vendor. Str ing. Field value shall begin w ith the follow ing “product tokens” (defined
by HTTP/1.1) . The f irs t product token identifes the operating system in the form OS name/OS vers ion , the
second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token identifes the product

us ing the form product name /product vers ion . For example, “USER-A GENT: unix/5.1 UPnP/2.0
MyProduct/1.0”. CA LLBACK

Required. Field value contains location to send event messages to. Defined by UPnP vendor . If there is more
than one URL, w hen the serv ice sends events, it w ill try these URLs in order until one succeeds . One or more

URLs each enc losed by angle brackets (“<” and “>”). Each URL shall be an HTTP over TCP URL (prefixed by
“http://”). The dev ice shall not truncate this URL in any w ay; if insuff icient memory is available to s tore the
entire CALLBACK URL, the device shall reject the subscription. At leas t one of the delivery URLs shall be
reachable by the device.

NT

Required. Field value contains Notif ication Type. shall be upnp:event.

SID

(No SID header f ield is used to subscribe.)

TIMEOUT

Recommended. Field value contains reques ted duration until subscr iption expires . Cons ists of the keyw ord
Se cond- follow ed (w ithout an intervening space) by an integer. UPnP 1.0 defined that the integer can be

replaced by the keyw ord inf inite . This has been deprecated in UPnP 2.0: UPnP 2.0 control points shall not
subscribe using keyword infinite .

STATEVAR

Recommended. Field value contains requested list of state var iables Cons is ts of an CSV list of evented state

var iables that the control point w ants to subscr ibe to. The dev ice implementation w ill acknow ledge the
subscr ibed state var iables in the subscr iption response. Note that w hen the dev ice implementation does not
recognize this f ield, the acknow ledgement of the registered state var iables w ill not be sent , and the events
generated by the subscription will contain all implemented evented state variables in the service.

If there are enough resources to maintain the subscription, the publisher should accept it. To

accept a subscription request, a publisher shall send a response in the following format within
30 seconds, inc luding expect ed t ransmission time. This shall be sent to the same endpoint as
that over which the subscript ion request was sent. After accepting the subscript ion, the

publisher assigns a unique ident ifier for the subscription, ass igns a duration for the
subscript ion, and sends an init ial event message (explained in detail later in this c lause). A
mult i-homed publisher shall send the response on the same UPnP -enabled interface on which

the subscript ion message was received. Values in i tal ics are placeholders for ac tual values.

 HTTP/1.1 200 OK

 DATE: when response was generated
 SERVER: OS/version UPnP/2.0 product/version

 — 93 —

© 2014 UPnP Forum. All Rights Reserved.

 SID: uuid:subscription-UUID
 CONTENT-LENGTH: 0

 TIMEOUT: Second-actual subscription duration
 ACCEPTED-STATEVAR: CSV of state variables

(No body for response to a request with method SUBSCRIBE, but note that the message shall
have a blank l ine fol lowing the las t HTTP header field.)

If the device sends the response over HTTP/1.0 without setting the KeepAlive token, or over
HTTP/1.1 with the CONNECTION: c lose header field, the device shall insure that the TCP FIN

flag is sent BEFORE sending the initial event message. In al l other cases, (unless the
response is chunked), a CONTENT-LENGTH shall be spec ified, (and set to 0), prior to
sending the init ial event .

Listed below are details for header fields appearing in the l ist ing above. Field names are not
case sens it ive. All field values are case sens itive except where noted.

Response l ine

HTTP/1.1

The highest vers ion supported by the or igin server that is compatible w ith the control point that issued the
request.

For example, if the control point spec if ied suppor t for HTTP/1.0 in the reques t, the response shall contain
HTTP/1.0.

200 OK

HTTP def ined s tatus code indicating that no HTTP er rors were detected..

Header fie lds

DATE

Recommended . Field value contains date w hen the response w as generated. “rfc1123 -date” as def ined in RFC
2616.

SERVER

Required. Spec if ied by UPnP vendor. Str ing. Field value shall begin w ith the follow ing “product tokens”
(defined by HTTP/1.1) . The f irst produc t token identifes the operating system in the form OS name /OS version,
the second token represents the UPnP vers ion and shall be UPnP/2.0, and the third token identifes the

product us ing the form product name /product vers ion. For example, “SERV ER: unix /5.1 UPnP/2.0
MyProduct/1.0”. SID

Required. Field value contains Subscr iption Identif ier. Shall be universally unique. Shall begin w ith uuid:.

Def ined by UPnP vendor . See c lause 1.1.4, “UUID format and recommended generation algor ithms” for the
mandatory UUID f ormat.

TIMEOUT

Required. Field value contains actual duration until subscr iption expires. Keyw ord “ Second-” follow ed by an
integer (no space). Should be greater than or equal to 1800 seconds (30 minutes).

CONTENT-LENGTH

Required if TCP FIN f lag cannot be guaranteed to be sent before the init ial event is sent. shall have f ield value
“0” .

ACCEPTED-STATEVAR

Required if the SUBSCRIPTION contains the STA TEVA R header containing a valid CSV of implemented
evented state variables. The implementation then shall only send events for the state var iables listed in the
STA TEVA R list. When one of the lis ted state var iables in the STA TEVA R CSV list is not implemented, the

A CCEPTED_STA TEVAR header shall not be sent back. This means that the subscr iption is valid and all state
var iables designated to be evented shall be evented.

If a publisher cannot accept the subscript ion, or i f there is an error with the subscription
request, the publisher shall send a response with one of the following errors. The response
shall be sent within 30 seconds, inc luding expected t ransmission t ime.

 — 94 —

© 2014 UPnP Forum. All Rights Reserved.

Table 4-4: — HTTP Sta tus Codes indica ting a Subscrip tion Error

Er r or Code e r r or De s cr ipt ion De s cr ipt ion

400 I ncompatible header
fields

An SI D header field and one of NT or CALLBACK header fields are
pr esent.

412 Pr econdition Failed CALLBACK header field is mis sing or does not contain a valid HTTP URL;

or t he NT header field does not equal upnp:event.

5xx Unable t o accept
r enewal

I f t he publisher is unable t o accept a renewal, it s hall r espond with an
appr opriate 500-series HTTP status code.

Other errors, inc luding other HTTP status codes, MAY be returned by layers in the protocol

s tack below the UPnP protocols. Consult documentation on those protocols for details .

4.1.3 Renew ing a subscription w ith SUBSCRIBE w ith SID

To renew a subscription to event ing for a particular service, a renewal message is sent to that
service's ful ly qualified event subscription URL (See c lause 4.1.2, “SUBSCRIBE with NT and
CALLBACK ”). However, unlike an init ial subscription message, a renewal message does not

contain either the service's identifier nor a delivery URL for event messages. Instead, the
message contains the subscription identifier ass igned by the publisher, providing an
unambiguous reference to the subscription to be renewed. Like a subscript ion message, a

renewal message MAY also include a requested subscription duration. A mult i -homed control
point shall send the renewal message using the same pair of UPnP -enabled interfaces used
for the init ial subscription.

The renewal message uses the same method as the subscription message, but the two
messages use a disjoint set of header fields; renewal uses SID and subscription uses NT and

CALLBACK. A message that inc ludes SID and either of NT or CALLBACK header fields is an
error.

To renew a subscript ion to event ing for a service, a subscriber shall send a request with
method SUBSCRIBE and SID header field in the fol lowing format. Values in italics are
placeholders for ac tual values.

 SUBSCRIBE publisher path HTTP/1.1
 HOST: publisher host:publisher port
 SID: uuid:subscription UUID
 TIMEOUT: Second-requested subscription duration

(No body for method with request SUBSCRIBE, but note that the message shall have a blank
l ine fol lowing the las t HTTP header field.)

Listed below are details for the request line and header fields appearing in the l ist ing above.

Field names are not case sens it ive. All field values are case sens it ive except where noted.

Request l ine

SUBSCRIBE

Method to init iate or renew a subscription.

publisher path

Path component of the fully qualif ied event subscr iption URL. Single, absolute path (see also RFC 2616,
c lause 3.2.2).

HTTP/1.1

The vers ion supported by the control point. (Note: the control point shall implement all mandatory components
of the

version specif ied). MAY be any HTTP version that is backwards compatible to HTTP/1.0 (like HTTP/1.1)

Header fie lds

 — 95 —

© 2014 UPnP Forum. All Rights Reserved.

HOST

Required. Field value contains domain name or IP address and optional por t components of fully qualif ied
event subscription URL. If the por t is missing or empty, port 80 is assumed.

CALLBACK

(No CA LLBACK header f ield is used to renew an event subscr iption.)

NT

(No NT header f ield is used to renew an event subscription.)

SID

Required. Field value contains Subscr iption Identif ier . Shall be the subscription identif ier ass igned by publisher
in response to subscr iption request. Shall be universally unique. Shall begin w ith uuid:. Defined by UPnP

vendor. See c lause 1.1.4, “UUID format and recommended generation algor ithms for the mandatory UUID
f ormat.

TIMEOUT

Recommended. Field value contains reques ted duration until subscr iption expires. Keyw ord Second- follow ed
by an integer (no space) . UPnP 1.0 defined that the integer can be replaced by the k eyw ord inf inite . This has
been deprecated in UPnP 2.0: UPnP 2.0 control points shall not subscribe us ing keyw ord inf inite . See
ref erence above.

To accept a renewal, the publisher reassigns a durat ion for the subscription and shall send a

response in the same format and with the same condit ions as a response to a request for a
new subscription, except that the initial event message is not sent again.

If a publisher cannot accept the renewal, or i f there is an error with the renewal request , the
publisher shall send a response with one of the following errors. The response shall be sent
within 30 seconds, inc luding expected t ransmission t ime.

Table 4-5: — HTTP Sta tus Codes indica ting a Resubscription Error

Er r or Code e r r or De s cr ipt ion De s cr ipt ion

400 I ncompatible header

fields

An SI D header field and one of NT or CALLBACK header fields are

pr esent.

412 Pr econdition Failed An SI D does not correspond t o a known, un -expired subscription;
or t he SID header field is missing or empty.

5xx Unable t o accept
r enewal

I f t he publisher is unable t o accept a renewal, it s hall r espond with an
appr opriate 500-series HTTP status code.

Other errors, inc luding other HTTP status codes, MAY be returned by layers in the protocol

s tack below the UPnP protocols. Consult documentation on those protocols for details .

4.1.4 Cance l ing a subscription w ith UNSUBSCRIBE

When event ing is no longer needed from a part icular service, a cancellat ion message should
be sent to that service's ful ly qualified event s ubscript ion URL (see c lause 4.1.2,

“SUBSCRIBE with NT and CALLBACK ”). The message contains the subscription identifier. A
mult i -homed control point shall send the cancel lat ion message using the same pair of UPnP -
enabled interfaces used for the initial subscription. Canceling a subscription generally

reduces service, control point, and network load. If a control point is removed abruptly from
the network, it might be imposs ible to send a cancellat ion message. As a fallback, the
subscription wil l eventually expire on its own unless renewed.

To explicit ly cancel a subscript ion to event ing for a service, a subscriber shall send a request
with method UNSUBSCRIBE in the following format. Values in ital ics are placeholders for

ac tual values.

 — 96 —

© 2014 UPnP Forum. All Rights Reserved.

 UNSUBSCRIBE publisher path HTTP/1.1
 HOST: publisher host:publisher port
 SID: uuid:subscription UUID

(No body for request with method UNSUBSCRIBE, but note that the message shall have a
blank l ine fol lowing the las t HTTP header field.)

Listed below are details for the request line and header fields appearing in the l ist ing above.
Field names are not case sens it ive. All field values are case sens it ive except where noted.

Request l ine

UNSUBSCRIBE

Method to cancel a subscription.

publisher path

Path component of the fully qualif ied event subscr iption URL. Single, absolute path (see also RFC 2616,
c lause 3.2.2).

HTTP/1.1

The vers ion supported by the control point. (Note: the control point shall implement all mandatory components
of the

version specif ied). MAY be any HTTP version that is backwards compatible to HTTP/1.0 (like HTTP/1.1)

Header fie lds

HOST

Required. Field value contains domain name or IP address and optional por t components of fully qualif ied
event subscription URL. If the por t is missing or empty, port 80 is assumed.

CALLBACK

(No CA LLBACK header f ield is used to cancel an event subscription.)

NT

(No NT header f ield is used to cancel an event subscription.)

SID

Required. Field value contains Subscr iption Identif ier . Shall be the subscription identif ier ass igned by publisher
in response to subscr iption request. Shall be universally unique. Shall begin w ith uuid:. Defined by UPnP
vendor. See c lause 1.1.4, “UUID format and recommended generation algor ithms” for the mandatory UUID
f ormat.

TIMEOUT

(No TIMEOUT header f ield is used to cancel an event subscription.)

To cancel a subscript ion, a publisher shall send a response in the following format within 30
seconds, inc luding expected t ransmission t ime.

 HTTP/1.1 200 OK

Response l ine

HTTP/1.1

The highest vers ion supported by the or igin server that is compatible w ith the control point that issued the
request.

For example, if the control point spec if ied suppor t for HTTP/1.0 in the reques t, the response shall contain
HTTP/1.0.

200 OK

HTTP def ined s tatus code indicating that no HTTP er rors were detected.

 — 97 —

© 2014 UPnP Forum. All Rights Reserved.

If there is an error with the cancellation request, the pub lisher shall send a response with one

of the following errors. The response shall be sent within 30 seconds, including expected
t ransmission t ime.

Table 4-6: — HTTP Sta tus Codes indica ting a Cance l Subscription Error

Er r or Code e r r or De s cr ipt ion De s cr ipt ion

400 I ncompatible header
fields

An SI D header field and one of NT or CALLBACK header fields are
pr esent.

412 Pr econdition Failed An SI D does not correspond t o a known, un -expired subscription;

or t he SID header field is missing or empty.

Other errors, inc luding other HTTP status codes, MAY be returned by layers in the protocol

s tack below the UPnP protocols. Consult documentation on those protocols for details .

4.2 Multicast Eventing

Figure 4-3: — Multicast eventing a rchitecture

control point 4

control point 3

control point 2

control point 1

root device 4

root device 3

root device 2

root device 1

Multicast event

Multicast event

Multicast event

Multicast event

multicast

Multicast event

Multicast event

Multicast event

Multicast event

root device 0

service

device

service

multicast

 event

The publisher MAY note changes to state variables by sending mult icast event messages.
Mult icast event messages contain the names of one or more state variables and the current
value of those variables, expressed in XML. To send and receive multicast event messages,

control points and services use the fol lowing subset of the overall UPnP protocol stack. (The
overall UPnP protocol s tack is l is ted at the beginning of this documen t.)

 — 98 —

© 2014 UPnP Forum. All Rights Reserved.

Figure 4-4: — Muli tcast eventing protocol stack

UPnP vendor [purple-italic]

UPnP Forum [red-italic]

UPnP De vice Architecture [green-bold]

Multicast Eventing [navy -bold]

UDP [black]

IP [black]

At the highest layer, multicast event messages contain vendor-spec ific informat ion l ike

vendor-spec ific state variable or specific variable values. Moving down the stack, vendor
content is supplemented by information from a UPnP Forum work ing commit tee, such as

service ident ifiers or variable names. Messages from the layers above are hosted in UPnP -
spec ific protocols to t ransport events in a similar format to unicast UPnP events, but over a
mult icast address where subscript ionless event ing fits the des ired usage. These messages

are based on the HTTP protocol header and body format, but are not HTTP compliant
because they are defined over UDP sockets. Throughout this clause, the same formatt ing and
extension rules for SSDP as set forth in clause 1.1.2, “SSDP message header fields ” and

c lause 1.1.3, “SSDP header field extens ions ” are used to give HTTP -l ike header field
formatt ing. In addit ion, services that use evented complex datatypes shall follow the
requirements in clause 2.5, “Service description”. Last ly, l ike SSDP, to l imit network

congest ion, the time-to-live (TTL) of each IP packet for each mult icast message should
default to 2 and should be configurable. This should be the same value as that used in SSDP.
When the TTL is greater than 1, i t is possible for mult icast messages to t raverse mult iple

routers; therefore control points and devices us ing non -AutoIP addresses shall send an IGMP
Join message so that routers will forward multicast messages to them (this is not necessary
when using an Auto-IP address since packets with Auto-IP addresses will not be forwarded by

routers).

Mult icast event ing is inherent ly unreliable s ince it is based on UDP. In addit ion, there will be a

greater possibil ity of message loss with greater packet s ize. To increase the probabil ity of
successful t ransmission, each message MAY be ret ransmitted one or more t imes. Therefore,
UPnP work ing committees shall specify the event s ize and event ret ransmission rules, based

on their need for rel iabil i ty.

4.3 Event messages

A service publishes changes to certain state variables by sending event messages. These

messages contain the names of one or more state variables and the current value of those
variables. Event messages shall be sent in a t imely manner so that subscribers are accurately
informed about the state of the service and can provide a respons ive user interface. If the

value of more than one variable is changing at the same time, the publisher should bundle
these changes into a s ingle event message to reduce process ing and network t raffic .

As explained above, an initial event message is sent when a subscriber first subscribes; this
event message contains the names and values for al l evented variables or individual
requested variables and allows the subscriber to initialize its model of the state of the service.

This message should be sent as soon as possible after the publisher accepts a subscript ion.
This message shall be sent, even if the control point unsubscribes before the message is
delivered. Subscript ion does not cause mult icast event m essages.

Mult icast event messages are constrained to being t ransported in a s ingle UDP pay load. This
cons ideration is important when ident ify ing variables that are to be multicast. If the cumulat ive

s ize of the variables that are eligible for being sent by multicast exceeds the UDP packet ’s
capac ity, i t may be necessary to send mult iple, dis tinc t multicast events .

 — 99 —

© 2014 UPnP Forum. All Rights Reserved.

Both unicast and mult icast event messages are tagged with an event key. In unicast event ing,

a separate event key shall be maintained by the publisher for each subscription to fac il itate
error detect ion (as explained below). The event key for a subscription is init ial ized to 0 when
the publisher sends the init ial event message. For each subsequent event message, the

publisher increments (by one) the event key for a subscript ion, and includes that updated key
in the event message. The event key for multicast events is also init ial ized to 0 when the
publisher sends the init ial event message. For each subsequent multicast event message, the

publisher increments (by one) the event key for the mult icast events, and includes that
updated key in the event message. Any implementation of event keys shall handle overflow
and wrap the event key from 4294967295 back to 1 (not 0). Unicast subscribers and multicas t

receivers shall also handle this spec ial case when the next event key is not an increment of
the previous key. The key shall be implemented as a 4 Byte (32 bit) uns igned integer.

All UPnP event messages shall be encoded us ing UTF-8.

4.3.1 Error Cases

For unicast event ing, the publisher shall send all event messages to the subscriber unt il the

subscript ion expires even when the subscriber fails to respond. When a subscriber has
missed one or more event messages, the subscriber MAY synchronize with the device’s
evented state by unsubscribing and re-subscribing. By doing so, the subscriber wil l get a new

subscription identifier, a new init ial event message, and a new event key.

For multicast event ing, since UDP is inherent ly unreliable, ret ransmiss ion of a mult icast event

message (using the same SEQ field value) can increase the rel iability. The receiver shall
interpret the same SEQ field value from separate mult icast event messages from a same
service (ident ified by USN field value) as being the exact ly the same message sent mult iple

t imes and shall therefore ignore such duplicates. Some state variables may change value too
rapidly for some environments, for example enterprises. Working committees shall spec ify
t raffic constraints for the DCP given these concerns and guidelines. Working committees

should consider both the interval for t ransmiss ion of mult icast events per event type (LVL:)
and the ret ransmission rules for part icular event ins tances.

4.3.2 Unicast eventing: Event messages: NOTIFY

To send an event message, a publisher shall send a request with method NOTIFY us ing the
fol lowing format. The following two examples i llust rate an event message using the
CONTENT-LENGTH header and an event message us ing chunked encoding. Values in i tal ics

are placeholders for ac tual values.

Event messages sent to different subscribers that have the same sequence number shall

contain the same content except for the HOST header field. A mult i -homed device shall send
the event message us ing the same pair of UPnP -enabled interfaces used for the init ial
subscription.

Note: XML namespace prefixes do not have to be the spec ific examples shown below (e.g.,
“s ” or “u”); they can be any value that obeys the rules of the general XML namespace

mechanism; control points shall accept event messages that use other legal XML namespace
prefixes.

 — 100 —

© 2014 UPnP Forum. All Rights Reserved.

Event message using the CONTENT-LENGTH header – Va l id w ith HTTP/1.0 or HTTP/1.1

 NOTIFY delivery path HTTP/1.0
 HOST: delivery host:delivery port
 CONTENT-TYPE: text/xml; charset="utf-8"

 NT: upnp:event
 NTS: upnp:propchange
 SID: uuid:subscription-UUID
 SEQ: event key
 CONTENT-LENGTH: bytes in body

 <?xml version="1.0"?>
 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">

 <e:property>

 <variableName>new value</variableName>
 </e:property>

 Other variable names and values (if any) go here.
 </e:propertyset>

Event message using chunked encoding – Va l id w ith HTTP 1.1 only

 NOTIFY delivery path HTTP/1.1

 HOST: delivery host:delivery port

 CONTENT-TYPE: text/xml; charset="utf-8"

 NT: upnp:event

 NTS: upnp:propchange
 SID: uuid:subscription-UUID

 TRANSFER-ENCODING: "chunked"
 SEQ: event key

 Length of chunk 1 in hexadecimal notation

 <?xml version="1.0"?>
 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">

 <e:property>

 <variableName>new value</variableName>

 </e:property>

 Other variable names and values (if any) go here.

 </e:propertyset>

 0

Listed below are details for the request line, header fields, and body elements appearing in

the l ist ing above. Field names are not case sensit ive. A ll field values are case sensit ive
except where noted. All body elements and at t ributes are case sens it ive; body values are not
case sens it ive except where noted. Except where noted, required elements shall occur

exactly once (no duplicates), and recommended or al lowed elements MAY occur at most once.
In part icular, a s ingle propertyse t element shall not include more than one property element
that spec ifies the same variableName element; separate event notification messages shall be

used.

Request l ine

NOTIFY

Method to notify c lient about event.

delivery path

Path component of delivery URL (CALLBACK header f ield in subscr iption message). Des tination for event

message. Single, absolute path (see also RFC 2616) . shall be from one of the URLs contained in the
CA LLBACK header f ield, without truncation or modif ication.

HTTP/1.1

Highest HTTP vers ion supported by the dev ice. (Note: chunked encoding shall not be used if the control point
supports only HTTP 1.0) .

Header fie lds

 — 101 —

© 2014 UPnP Forum. All Rights Reserved.

HOST

Required. Field value contains domain name or IP address and optional por t components of delivery URL
(CALLBACK header f ield in subscription message). If the port is missing or empty, port 80 is assumed.

ACCEPT-LANGUAGE

(No A CCEPT-LA NGUAGE header f ield is used in event messages.)

CONTENT-LENGTH

Required if Or igin Server does not c lose the sess ion after sending the response A ND Or igin Server does not
send the response using chunked encoding.

PROHIBITED if Or igin Server sends the response using chunked encoding. Allowed otherwise.

Field value specif ies the length of the body in bytes. Integer.

TRANSFER-ENCODING

A llow ed for HTTP/1.1 and above. Field value spec if ies w hether the response is chunked encoded by having

f ield value “chunked” (in the example above the body is sent in a s ingle chunk) . shall not be spec if ied if
CONTENT-LENGTH header f ield is present.

CONTENT-TYPE

Required. Field value shall be “text/xml; charset="utf-8" ”

NT

Required. Field value contains Notif ication Type. shall be upnp:event.

NTS

Required. Field value contains Notif ication Sub Type. shall be upnp:propchange.

SID

Required. Field value contains Subscr iption Identif ier. shall be universally unique. shall begin w ith uuid:.

Def ined by UPnP vendor . See c lause 1.1.4, “UUID format and recommended generation algor ithms” for the
MA NDA TORY UUID f ormat.

SEQ

Required. Field value contains Event Key . Shall be 0 for init ial event message. Shall be incremented by 1 for

each event message sent to a particular subscr iber. To prevent overflow , shall be w rapped from 4294967295
to 1. 32-bit uns igned value represented as a s ingle dec imal integer w ithout leading zeroes (some
implementations MAY include leading zeroes, which should be ignored by the recipient).

Body

<propertyset>

Required. xmlns namespace attr ibute shall be urn:schemas-upnp-org:event-1-0. Contains the follow ing sub
element:

≤property>

Required. Repeat once for each var iable name and value in the event message. Shall be qualif ied by

the namespace pref ix def ined in the xmlns attr ibute of the <propertyset> element. Contains the
f ollowing sub element:

<variableName>

Required. Element is name of a state variable that changed (<name> sub element of

<stateVariable> element in service descr iption). Shall not be qualif ied w ith any
namespace. Value is the new value for this state variable. Case sens it ive. Single data type as
spec if ied by UPnP service descr iption.

For future extens ibi lity and according to the requirements in clause 2.7, “Non-standard vendor
extensions ” and clause 2.8, “UPnP Device Schema”, when processing XML like the lis ting
above, devices and control points shall ignore: (a) any unknown elements and their sub

elements or content, and (b) any unknown att ributes and their values. Note that when
subscribing to event ing with a service that is of a higher version than what is supported by the
control point , event not ifications MAY be sent by the service to the control point containing

state variable names that are not recognized by the control point. The control point should
discard and ignore such unrecognized s tate variables within event not ificat ion messages.

 — 102 —

© 2014 UPnP Forum. All Rights Reserved.

When the new value of any variable contains one or more characters reserved as markup

(such as ampersand (“&”) or less than (“<”)), the text shall be escaped in accordance with the
provis ions of clause 2.4 of the XML specificat ion and each such character replaced with the
equivalent numeric representat ion or s tring (such as “&” or “< ”). Such c haracters

appearing in URLs that appear as values MAY also be percent -encoded in accordance with
the URL percent -encoding rules spec ified in c lauses 2.1 and 2.4 of RFC 3986.

On a multi -homed device, al l fully -qualified URLs contained in event body that refer to
resources on the device shall be reachable on the UPnP -enabled interface on which the event
message is sent .

Subject to the constraints defined in clause 2.7, “Non-standard vendor extensions ” and c lause
2.8, “UPnP Device Schema”, control points and devices shall ignore any XML comments or

XML processing inst ructions embedded in UP nP event messages that they do not understand.
Note that because HTTP 1.1 al lows use of chunked encoding, some devices MAY send the
event notificat ion us ing chunked encoding if the SUBSCRIBE request specified HTTP 1.1. It is

therefore recommended that al l implementations that inc lude HTTP 1.1 in the SUBSCRIBE
request support receiving chunked encoding.

To acknowledge receipt of this event message, a subscriber shall respond within 30 seconds,
including expected t ransmission t ime. A multi -homed subscriber shall send the response
us ing the same pair of UPnP -enabled interfaces used for the event message. If a subscriber

does not respond within 30 seconds, or i f the publisher is unable to connect to the
subscript ion URL, the publisher should abandon sending this message to the subscriber but
shall keep the subscript ion active and send future event messages to the subscriber unti l the

subscript ion expires or is cancelled. The subscriber shall send a response in the fol lowing
format.

 HTTP/1.1 200 OK

Response l ine

HTTP/1.1

Highest HTTP version suppor ted by the control point that is compatible w ith the dev ice that sent the event
message.

200 OK

HTTP def ined s tatus code indicating that no HTTP er rors were detected.

 (No body for a request with method NOTIFY, but not e that the message shall have a blank
l ine fol lowing the las t HTTP header field.)

If a device sends an event to a control point us ing HTTP/1.0 without the KeepAlive token, the
control point shall c lose the socket after responding. If a device sends an even t to a control
point using HTTP/1.1 and sets the Connection:CLOSE token, the control point shall c lose the

socket after responding.

If there is an error with the event message, the subscriber shall respond with one of the

fol lowing errors. The response shall be sent within 30 seconds, including expected
t ransmission t ime.

Table 4-7: — HTTP Sta tus Codes indica ting a Noti fy Error

Er r or Code e r r or De s cr ipt ion De s cr ipt ion

400 Bad r equest The NT or NTS header field is missing;
or t he r equest is malformed.

 — 103 —

© 2014 UPnP Forum. All Rights Reserved.

Er r or Code e r r or De s cr ipt ion De s cr ipt ion

412 Pr econdition Failed An SI D does not correspond t o a known, un -expired subscription;
or t he NT header field does not equal upnp:event;

or t he NTS header field does not equal upnp:propchange;
or t he SID header field is missing or empty.

Other errors, inc luding other HTTP status codes, MAY be returned by layers in the protocol

s tack below the UPnP protocols. Consult documentation on those protocols for details .

4.3.3 Multicast Eventing: Event messages: NOTIFY

To send a mult icast event message, a publisher shall send a message with method NOTIFY
us ing the following format. The fol lowing example i llust rates an event message using the

CONTENT-LENGTH header. Values in i tal ics are placeholders for ac tual values.

A mult i -homed publisher shall multicast the event message on each of its UPnP -enabled

interfaces. Event messages sent on different UPnP -enabled interfaces that have the same
sequence number shall contain the same content except for possibly the HOST header field
and any ful ly -qualified URLs contained in the event body. The HOST header field of an

advert isement shall be the standard multicast event ing address spec ified for the protocol
(IPv4 or IPv6) used on the interface. All fully -qualified URLs contained in the event body t hat
refer to resources on the device shall be reachable on the UPnP -enabled interface on which

the event message is sent .

Note: XML namespace prefixes do not have to be the specific example shown below (e.g., “s ”

or “u”); they can be any value that obeys t he rules of the general XML namespace mechanism;
control points shall accept event messages that use other legal XML namespace prefixes.

Multicast event message using the CONTENT-LENGTH header – Val id with HTTP/1.0 or
HTTP/1.1

 NOTIFY * HTTP/1.0
 HOST: 239.255.255.246:7900 *** note the port number is different than SSDP ***
 CONTENT-TYPE: text/xml; charset="utf-8"

 USN: Unique Service Name for the publisher

 SVCID: ServiceID from SCPD

 NT: upnp:event
 NTS: upnp:propchange
 SEQ: monotonically increasing sequence count
 LVL: event importance
 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or update

message
 CONTENT-LENGTH: bytes in body <?xml version="1.0"?>

 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">
 <e:property>

 <variableName>new value</variableName>

 </e:property>
 <!-- Other variable names and values (if any) go here. -->

 </e:propertyset>

Listed below are details for the request line, header fields, and body elements appearing in

the l ist ing above. Field names are not case sensit ive. All field values are case sensit ive
except where noted. All body elements and at t ributes are case sens it ive; body values are not
case sens it ive except where noted. Except where noted, required elements shall occur

exactly once (no duplicates), and recommended or al lowed elements MAY occur at most once.
In part icular, a s ingle propertyse t element shall not include more than one property element
that spec ifies the same variableName element; separate event notification messages shall be

used.

Request l ine
Shall be “NOTIFY * HTTP/1.1”

Header fie lds

 — 104 —

© 2014 UPnP Forum. All Rights Reserved.

HOST

Required. Field value shall be 239.255.255.246:7900. Please note that por t number 7900 is different from

SSDP por t number 1900.

CONTENT-LENGTH

Required. Field value spec if ies the length of the body in by tes. Integer. Chunked encoding shall not be used
f or mult icast event messages.

CONTENT-TYPE

Required. Field value shall be “text/xml; charset="utf-8" ” .

USN

Required. Field value contains Unique Serv ice Name for the publisher . Ident if ies a unique ins tance of a serv ice
in a unique ins tance of a dev ice . It shall be one of the follow ing forms . The prefix (before the double colon)
shall match the value of the UDN element in the dev ice descr iption. (Clause 2, “Description” explains the UDN
element.) Single URI.

uuid:device-UUID::urn:schemas-upnp-org:service:serviceType:ver

w here dev ice-UUID is spec if ied by the UPnP vendor; serv iceType and ver are defined by the UPnP

Forum w orking committee. See c lause 1.1.4 , “UUID format and recommended generation algor ithms”
f or the MA NDATORY UUID f ormat.

uuid:device-UUID::urn:domain-name:service:serviceType:ver

w here dev ice-UUID, domain-name, serv iceType and ver are defined by the UPnP vendor. See c lause

1.1.4 , “UUID f ormat and recommended generation algor ithms” for the MA NDA TORY UUID f ormat.
Per iod characters in the domain name shall be replaced by hyphens in accordance with RFC 2141.

SVCID

Required. Field value contains Serv iceID from the SCPD to uniquely identify w hich service generated the event.
A s defined in clause 2.2, “Gener ic requirements on XML usage”

NT

Required. Field value contains Notif ication Type. Shall be upnp:event.

NTS

Required. Field value contains Notif ication Sub Type. Shall be upnp:propchange.

SEQ

Required. Field value c ontains Event Key . The numer ic sequence count shall be 0 for init ial mult icas t event
message. Shall be incremented by 1 for each mult icast event message per a serv ice; how ever , w hen a
mult icast message is retransmitted, it shall be sent w ith its or iginal event key . To prevent overflow , shall be
wrapped from 4294967295 to 1. 32-bit uns igned value represented as a s ingle dec imal integer w ithout leading
zeroes (leading zeroes, if present, shall be ignored by the recipient).

LVL

Required. Field value shall be a s tr ing in UTF-8. Event level allow s the receiver to f irst level f ilter messages
based on the value and is defined by the UPnP Technical Committee. See Table 4-8, “Multicas t event levels”

for the Event Levels def ined w ith this vers ion of the UPnP architecture. UPnP Working Committees shall
spec ify event level values when defining events that will be multicast.

The follow ing table summar izes def ined event levels and the expec ted meaning of those values. Event levels
defined by the UPnP Forum Technical Committee start w ith the pref ix “upnp:” . V endor and other ex tens ions
outs ide the UPnP Forum shall be pref ixed by the domain name of the defining organization. For example:
“domain.org:/alerts/level/”

Table 4-8: — Multicast event leve ls

Eve nt Le ve l De s cr ipt ion

upnp:/emergency The event carries critical information t hat the
dev ice should act upon immediately.

upnp:/fault The event carries information r elated t o an

er r or case

 — 105 —

© 2014 UPnP Forum. All Rights Reserved.

Eve nt Le ve l De s cr ipt ion

upnp:/warning The event carries information t hat is a non -
c r itical condition t hat t he device MAY want t o

pr ocess or pass t o the user

upnp:/info The event carries information about t he normal
oper ation of t he device that may be of interest

t o end-users. This information is simply
informative and does not indicate any abnormal
condition or s tatus such as a warning or fault .

O ther event levels are defined for those
pur poses.

upnp:/debug The event carries debug information typically

used by programmers and t est engineers t o
evaluate the internal operation of the device.
This information is t ypically not displayed to

end users.

upnp:/general For events t hat fit into no other defined
category

<domain>:/<level> Example vendor extension. Domain is the ICANN

domain name for t he vendor and level is an
ar bitrary string defined by the vendor. E.g.
domain.org:/alerts/type/

BOOTID.UPNP.ORG

Required. As defined in c lause 1.2, and 1.2.2.

Body

<propertyset>

Required. xmlns namespace shall be “urn:schemas-upnp-org:event-1-0”. Contains the following sub element:

<property>

Required. Repeat once for each var iable name and value in the event message. Shall be qualif ied by

the namespace pref ix def ined in the xmlns attr ibute of the <propertyset> element. Contains the
f ollowing sub element:

<variableName>

Required. Element is name of a state var iable that changed (name sub element of

stateVariable element in serv ice descr iption) . Shall not be qualif ied w ith any namespace.

Value is the new value for this s tate var iable. Case sensit ive. Single data type as specif ied by
UPnP service description.

Note that for simplic ity many of the header fields for mult icast event ing are the same as for

unicast event ing. These include: HOST, CONTENT-TYPE, USN, NT, NTS, and SEQ. In
addit ion, the body of the message (propertyset) has the same format as unicast events .

For future extens ibi lity and according to the requirements in clause 2.7, “Non-standard vendor
extensions ” and clause 2.8, “UPnP Device Schema”, when processing XML like the lis ting
above, devices and control points shall ignore: (a) any unknown elements and their sub

elements or content , and (b) any unknown att ributes and their values. Subject to the
constraints defined in clause 2.7, “Non-standard vendor extens ions ” and clause 2.8, “UPnP
Device Schema”, control points and devices shall ignore any XML comments or XML

process ing inst ructions embedded in UPnP device and service descriptions that they do not
understand. The control point should discard and ignore unrecognized state variables within
mult icast event not ificat ion messages.

When the new value of any variable contains one or more characters reserved as markup
(such as ampersand (“&”) or less than (“<”)), the text shall be escaped in accordance with the

provis ions of clause 2.4 of the XML specificat ion and each such character replaced with the
equivalent numeric representat ion or s tring (such as “&” or “< ”). Such characters
appearing in URLs that appear as values MAY also be percent -encoded in accordance with

the URL percent -encoding rules spec ified in c lauses 2.1 and 2.4 of RFC 3986.

 — 106 —

© 2014 UPnP Forum. All Rights Reserved.

4.4 UPnP Event Schema

The UPnP Event Schema defines the s t ructures and data types used in the body of UPnP

event notifications. As explained with the UPnP Device and Service Schemas, the UPnP
Event Schema is written in XML syntax according to the convent ions of XML Schema (Part 1:
Structures, Part 2: Datatypes). The UPnP Event Schema is defined within a UPnP service

template; however, the schema shall conform to the format as defined in clause B.5, “UPnP
Event Schema”. The elements it defines are used in event not ifications.

As explained in clause 2, “Descript ion”, the UPnP Service Schema also spec ifies a
sendEvents att ribute for a state variable. The default value for this at t ribute is “yes”. To

denote that a state variable is evented, the value of this att ribute is “yes ” (or the att ribute is

omit ted) in a service descript ion; to denote that a state variable is non-evented, the value is
“no”. Note that i f al l of a service's s tate variables are non -evented, the service has nothing to

publish, and control points cannot subscribe and wil l not receive event messages from the
service.

4.5 Augmenting the UPnP Device and Service Schemas

Some s tate variables may change value too rapidly for event ing to be useful. UPnP Forum
Work ing Committees or UPnP vendors may document moderat ion in the number of event
messages sent due to changes in a variable ’s value. Event moderat ion may inc lude limitation

on the frequency in report ing change of a state variable value or a minimum degree of change
that shall occur before a change is reported.

Par am e te r De s cr ipt ion

m aximumRate

Single numeric value (in seconds) of type integer or f loat. State variable v shall not be part
of an event message more often than every n seconds. If v is the only s tate variable

changing, then an event message containing the s tate variable shall not be generated
more of ten than every n seconds. If v has changed sooner than n seconds from the last
event message that contains v, then an event message containing the current value of v
shall be sent in a t imely manner after n seconds from the previous event message

containing v. If v has not changed with in n seconds following the last event message that
contains v, then when v does change an event message with the current value of v shall be
sent in a t imely manner. Specifying a maximumRate value is useful for variables that

model f requently changing state variables.

m inimumDelta

Single numeric value (minimum change required) whose type shall match the

cor responding state variable. State var iable v shall not be part of an event message unless
its value has changed (plus or minus) by at least minimumDelta since the last t ime an
event message was sent that contains v. Only valid for state variables with a numeric

(integer or f loat) data type. Specifying a minimumDelta value is useful for variables that
model continuously changing state variables.

The publisher MAY send out any changed moderated variable when an event goes out. The

publisher shall meet moderation rules described above, but the publisher MAY flush recent
changes when it sends out an event message.

Note that moderat ion affects events only and not state table updates. Specifically, control
act ions which return the value of s tate variables MAY return a more current value than
published via event ing. Put another way, moderat ion means that not al l state table changes

result in events .

Dec is ions about which variables to event and any poss ible moderation is up to the

appropriate UPnP Forum work ing committee (for s tandard services) or a UPnP vendor (for
non-s tandard services).

4.6 Re fe rences

RFC 2616, HTTP: Hypertex t Transfer Protocol 1.1. Available at :
ht tp: / /www. iet f.org/rfc /rfc2616.tx t.

RFC 3986, Uniform Resource Ident ifiers (URI): Generic Syntax. Available at :
ht tp: / /www. iet f.org/rfc /rfc3986.tx t.

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3986.txt

 — 107 —

© 2014 UPnP Forum. All Rights Reserved.

XML, Extensible Markup Language. Available at : ht tp://www.w3.org/TR/2000/REC-xml-

20001006.

XML Schema (Part 1: Struc tures, Part 2: Datatypes) . Available at :

ht tp: / /www.w3.org/TR/xmlschema-1, ht tp: //www.w3.org/TR/xmlschema-2.

5 Presentation

Presentation is Step 5 in UPnP network ing. Presentation comes after address ing (Step 0)
where devices get network addresses, after discovery (Step 1) where control points find
interest ing device(s), and after description (Step 2) where control points learn about device

capab il ities . Presentat ion exposes an HTML-based user interface for controlling and/or
viewing device status. Presentat ion is complementary to control (Step 3) where control points
send act ions to devices, and event ing (Step 4) where control points lis ten to state changes in

device(s).

After a control point has (1) discovered a device and (2) ret rieved a descript ion of the device,

the control point is ready to begin presentat ion. If a device has a URL for presentat ion, then
the control point can ret rieve a page from this URL, load the page into a browser and,
depending on the capabil ities of the page, al lo w a user to control the device and/or view

device s tatus. The degree to which each of these can be accomplished depends on the
spec ific capabil it ies of the presentat ion page and device.

Figure 5-1: — Presenta tion a rchitecture

control point

browser

root device

service

service

device

service

description

presentation URL

HTTP GET

HTTP RESP

HTML page

device/service operation

The URL for presentat ion is obtained from the presentationURL element in the device

description. If presentationURL is an absolute URL, the fully qualified presentation URL is the
presentat ionURL. Otherwise, i f presentat ionURL is a relative URL, the ful ly qualified
presentat ion URL is the URL resolved from presentat ionURL in accordance with c lause 5 of

RFC 3986, us ing either the URLBase element, i f spec ified, or the URL from which the device
description was ret rieved as the base URL. A mult i -homed control point that attempts to
ret rieve a presentat ion page on a part icular UPnP -enabled interface shall use the ful ly

qualified presentat ion URL from the descript ion document received on that interface. The
device descript ion is delivered via a descript ion message. Clause 2, “Description” explains the
device descript ion and descript ion messages in detail .

Retrieving a presentation page is a s imple HTTP-based process and uses the fol lowing
subset of the overall UPnP protocol stack. (The overall UPnP protocol stack is l isted at the

beginning of this document.)

Figure 5-2: — Presenta tion protocol stack

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2

 — 108 —

© 2014 UPnP Forum. All Rights Reserved.

UPnP vendor [purple-italic]

UPnP Device Architecture [green-bold]

HTTP [black]

TCP [black]

IP [black]

At the highest layer, the presentation page is specified by a UPnP vendor. Moving down the

stack, the UPnP Device Architecture spec ifies that this page be written in HTML. The page is
delivered via HTTP over TCP over IP. For reference, colors in [square brackets] are included

for cons is tency with other c lauses in this document.

To ret rieve a presentation page, the control point issues an HTTP GET r equest to the

presentat ion URL, and the device returns a presentat ion page. Responses to HTTP GET
requests for presentat ion pages shall be sent us ing the same address on the same interface
on which the HTTP GET was received. The generic requirements on HTTP usage in UPnP 2.0

(as defined in c lause 2.1, “Generic requirements on HTTP usage” of this document) shall be
fol lowed by devices and control points that implement pres entation.

Unlike the UPnP Device and Service Templates, and standard device and service types, the
capabil ities of the presentation page are completely spec ified by the UPnP vendor. The page
shall be an HTML page; it is recommended that the page be based upon XHTML-Bas ic.

However, other design aspects are left to the vendor to spec ify. This inc ludes, but is not
l imited to, all capabili ties of the control point 's browser, scripting language or browser plug -ins
used, and means of interacting with the device. To implement a presentation page, a UPnP

vendor MAY wish to use UPnP mechanisms for control and/or event ing, leveraging the
device's ex is t ing capabili ties but is not constrained to do so.

Presentation pages should use mechanisms provided by HTML for localization (e.g. , META
tag with charset att ribute). Control points should use the ACCEPT-LANGUAGE and
CONTENT-LANGUAGE feature of HTTP to t ry to ret rieve a localized presentat ion page.

Specifically, a control point MAY include a HTTP ACCEPT-LANGUAGE header field in the
request for a presentat ion page; i f an ACCEPT-LANGUAGE header field is present in the
request, the response shall inc lude a CONTENT-LANGUAGE header field to ident ify the

page's language.

It is recommended that fully qualified URLs to resources on the device are not embedded in

HTML presentation pages, but that relative URLs are used instead, so that the host portion of
the embedded URLs does not need to be modified when sent on different UPnP -enabled
interfaces.

5.1 Re fe rences

RFC 3986, Uniform Resource Ident ifiers (URI): Generic Syntax. Available at :
ht tp: / /www. iet f.org/rfc /rfc3986.tx t.

HTML, HyperText Markup Language. Available at : ht tp: //www.w3.org/TR/html4.

XHTML™ Basic . Available at : ht tp://www.w3.org/TR/xhtml -bas ic/ .

http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/MarkUp/
http://www.w3.org/TR/xhtml-basic/

 — 109 —

© 2014 UPnP Forum. All Rights Reserved.

Annex A

(normative)
IP Version 6 Support

A.0 Note (informative)

2014 IPv6 Support Update: This revis ion to the UPnP Dev ice Architec ture A nnex A is mo tivated by a need to allow
UPnP serv ices and implementations to determine address selection preferences , and not require they abide by the

default RFC 6724 preference scheme. RFC 6724 (w hich obsoleted RFC 3484) expressed IPv6 preference as a
default behavior, but explic it ly recognized that applications may have good reason to use other preference
schemes, and described several possible other preference schemes.

2012 IPv6 Suppor t Update: This rev is ion to the UPnP Dev ice Architecture Annex A is motivated by operational
experience gained s ince the previous update. There are four high level goals addressed with these latest changes:

1. IPv6 support needs to be required in order for new and existing devices to interoperate with each other

2. GUA and ULA should be treated w ith equal w eight, w ith address selec tion performed according to IETF
guidance

3. IPv6 needs to be preferred over IPv4 whenever it is available, per IETF guidance

4. The IPv6 updates need to be applicable to UDA 1.0, UDA 1.1 and UDA 2.0 implementations

UPnP dev ices and control points need to be encouraged to suppor t IPv6. The IPv4 public address space is

effectively exhausted, and the move tow ards IPv6 is cons idered inev itable. Serv ice prov iders and on- line content
prov iders are all adding support of IPv6. Consumer elec tronics dev ices that are capable of accessing on- line
serv ices and content w ill also need to move to IPv6. In fact, the IETF has s ignaled its opinion on the deployment of
IPv6 in RFC 6540, t it led “ IPv6 Suppor t Required for all IP-capable Nodes .” Also, as IPv6 standards and support

progress, there may be addit ional benefit to hav ing UPnP suppor ted over IPv6. There are potential advantages to
the Remote Access architecture, as w ell as poss ible future benef its for traversal of multiple r outers ins ide a home
netw ork. IPv6 suppor t is being encouraged by CEA through the efforts of a new CEA Working Group focused on
IPv6 and the trans it ion from IPv4. UPnP needs to stay relevant in the evolv ing IP w or ld, w hich demands that IPv6

interoperability be enabled. Legacy UDA 1.0 cer tif ied dev ices are allow ed to remain non- IPv6 compliant, how ever it
is highly recommended that all UPnP dev ices and control points support IPv6 and dual -stack operation.

While it may be preferable to use ULA for communicatio n w ithin the home netw ork, prefer ring ULA over GUA under
all condit ions w ould result in breaking external connectiv ity. This rev is ion of Annex A defines ULA and GUA as
hav ing equal w eight. It descr ibes a “use both” approach to discovery and adver tisement w here dev ices and control

points perform initial communication on all enabled IP addresses (IPv4 and IPv6 alike). For other communication,
there are s tandard mechanisms for making address selection that do not require a default overr iding preference for
one or the other addressing schemes. These methods are documented in IETF RFC 3484, w hich is currently being
updated. UPnP dev ices that follow the most up -to-date standard for address selection w ill have the highest

guarantee of interoperability. Note that IETF RFC 3484 also requires dev ices to prefer IPv6 over IPv4. There are a
var iety of reasons w hy the IETF has taken this approach, and these reasons apply to UPnP devices and
applications just as w ell as other dev ices and applications . It is also des irable f or UPnP dev ices and applications to
use address selection mechanisms that are consistent with those used by other applications and devices.

A.1 Introduction

Most of today 's Internet uses IPv4, which was first s tandardized in 1981. IPv4 has been

remarkably res il ient in spite of its age, but it is beginning to have problems. Most important ly,
there is a growing shortage of IPv4 addresses, which are needed by all new machines added
to the Internet. Deployment of large numbers of UPnP devices wil l only exacerbate the

shortage.

IPv6 overcomes many shortcomings of the IPv4 protocol, such as the comparat ively l imited

number of available addresses and provides other significant opt imizat ions. It also adds many
improvements to IPv4 in areas such as rout ing and network a utomatic configuration. IPv6 is
expected to gradually replace IPv4, with the two coexis ting for a number of years , i f not

decades, during a t rans it ion period.

This Annex describes mechanisms that will al low devices and control points based on the

UPnP Device Architec ture to be used on IPv6 networks.

 — 110 —

© 2014 UPnP Forum. All Rights Reserved.

A.2 General Principles

A.2.1 UPnP Device Architecture V1.0

UDA 1.0 devices and control points SHALL implement IPv4 and support IPv4 -only operat ion,
and SHOULD implement IPv6 and support dual stack (IPv4 and IPv6) operat io n. Vendors
MAY choose to al low IPv6-only operation as a policy alternative, but a device and a control

point SHALL run IPv4 in order to be cert i fied.

A.2.2 UPnP Device Architecture V 2.0

UDA 2.0 devices and control points SHALL implement IPv4 and IPv6, SHALL support dual

stack (IPv4 and IPv6) operat ion, and SHALL be capable of operating on IPv4 -only and IPv6-
only networks. Vendors MAY choose to al low IPv4-only and/or IPv6-only operation as
configuration alternatives, but a device and a control point SHALL run dual-stack in order to

be cert i fied.

A.2.3 IPv6 and Dua l Stack

Devices operat ing in dual -stack mode SHALL perform discovery and advert isement on all

available non-temporary (RFC 4941) Globally Unique Addresses (GUA), Unique Local
Addresses (ULA), Link -Local Addresses, and IPv4 addresses. This l ist excludes temporary
addresses, deprecated address space, and addresses associated with various IPv4 to IPv6

t rans it ion technologies (e.g. , 6to4, Teredo, ISATAP). While not express ly forbidden, these
addresses SHOULD NOT be used for discovery and advert isement. IETF RFC 6724
recommends default source and dest ination address -select ion behavior but spec ifically notes

that its select ion rules are not to be construed to override an application or upper layer's
explic it choice of a legal destination or source address. UPnP control points and devices
SHOULD use RFC 6724 default destination address selec tion algorithms in the absence of

more specific guidance. However, it is allowed for more spec ific guidance to ex ist, and UPnP
implementers are encouraged to ident ify i f such guidance is needed to meet their particular
use cases. For any selected dest ination address, control points and devices SHALL use RFC

6724 source address selec tion algorithms.

All IPv6 devices and control points that implement both stacks are inherently multi -homed. An

IPv6 device or control point MAY also have multiple IPv6 addresses from both ULA and GUA
address scopes. The basic princ iple is that the unicast addresses advert ised by a device are
cons istent wi th the scope used for that mult icast advert isement message. The rules for

associat ing an IPv6 address with a part icular multicast scope are defined based on the
degree of ”routeability ” provided by a particular IPv6 address. The two multicast scopes
current ly defined for use in UPnP are:

 Link-Local Scope (the s tations reachable w ithout routing) w hich uses addresses called Link-Local
A ddresses.

 Site-Local Scope (a private netw ork cons isting of one or more links bounded by a site’s administrative

edge) w hich uses Unique Local Addresses (ULA) or Globally Unique Addresses (GUA). This scope is
inc lusive of the Link-Local Scope.

See RFC 4291 Sect ion 2.7 for mult icast scope definit ions.

The Internet Ass igned Numbers Authority has registered a multicast address an d port for
SSDP: an address is of the form FF0X::C. This is a variable scope multicast address where X

is changed to represent the appropriate scope. A device advert is ing on the local link would
use a scope of 2 and address [FF02::C]:1900. A s ite -scope advert isement on the home
network would use scope 5 [see 2.7 of RFC 4291] and spec ify address [FF05: :C]:1900. Table

A-1 shows the mult icast scope to use with a part icular source address.

Since a UPnP device uses multicast for advert isements , and mult icast event ing, and there is a

corresponding scope defined for multicast, the rules set forth below define the select ion of
unicast addresses in the context of the multicast scope used for mult icast messages. In
addition, a UPnP device SHALL adhere to all multi -homed behaviors described in this

document.

 — 111 —

© 2014 UPnP Forum. All Rights Reserved.

The fol lowing requirements apply to devices and control points us ing the UPnP Device

Architec ture over IPv6. This is an overview of the process. Implementers SHALL refer to the
c ited references for details and conform to requirements inc luded within those c itations.

a) Devices and control points SHALL use only the Link -Local unicast address as the source
address and when spec ify ing a li teral IP address in LOCATION URLs in all multicast
messages that are mult icast to the Link -Local scope FF02: :C for SSDP and FF02::130 for

mult icast eventing. Devices and control points SHALL lis ten on the Link -Local
scope. See RFC 4862 for details of Link -Local address ing.

e) Devices and control points SHALL implement SLAAC (RFC 4862) for address ass ignment
on each IPv6-enabled interface. They MAY implement DHCPv6 with the IA -NA option

(RFC 3315) for address ass ignment. Once the address ass ignment process is complete,
the device or control point wil l have exact ly one l ink local address available (unless
Duplicate Address Detection fai led) and zero, one, or more ULA and/or GUA addresses
available for use, on an IPv6-enabled interface.

f) Devices and control points SHALL use an acquired ULA or GUA in al l multicast messages
as the source address and when spec ify ing a l iteral IP address in LOCATION URLs that
are mult icast to the Site-Local scope addresses of either FF05: :C or FF05: :130.

g) Devices and control points SHALL NOT send Global scoped, Organizat ion -Local scoped,
or Admin-Local scoped multicast messages.

h) A device SHALL listen for unicast SSDP t raffic on all mult icast scopes on which it has
advert ised, for each UPnP -enabled interface. Control points SHALL l isten for unicast
SSDP t raffic in order to ident ify and control devices.

i) The hop limit of each IP packet for a Site -Local scope mult icast message SHALL be
configurable and SHOULD default to 10.

j) When a LOCATION URL inc ludes a literal IP address, that IP address SHALL match the
unicast source address used to send the mess age. When a LOCATION URL includes a
ful ly qualified domain name (FQDN), the resolut ion of that FQDN SHALL include the IP

address used as the unicast source address. For example, this means that i f mDNS or
other mechanisms are used to create DNS entries, th at DNS t rans lations wil l need to ex ist
for al l of a device’s IP addresses that are used for discovery and advert isement.

k) Since devices will mult icast NOTIFY and M -SEARCH messages on multiple IP addresses,

receiving devices SHALL consider all messages with the same USN and
BOOTID.UPNP.ORG or NLS value as being from a s ingle device and select exactly one (1)
address to use in subsequent unicast communication. When mult iple multicast messages

are received from a s ingle host (each with different source IP address), the receiving
device SHALL selec t a destinat ion address (from among the source addresses of the
mult iple mult icast messages) and LOCATION URL to use for subsequent unicast

communicat ion with a particular device by using an algorithm that results in cons istent
address select ion behavior. The default destinat ion address select ion rules are descr ibed
in RFC 6724, but alternate algorithms can be implemented.

l) Devices SHALL select a source address to use when responding to mult icast messages

according to the selec tion rules described in RFC 6724. Note that this wil l mean selecting
a source address that best matches the dest ination address (the source address of the
mult icast message that the receiving device selec ted in the above requirement).

m) Devices which multicast messages on multiple interfaces (i.e. IPv4 and IPv6) SHALL

ensure that the t ransmiss ion start time of each mult icast message on corresponding
interfaces is less than 20ms. Note: Compliance with this requirement will be evaluated
under average network condit ions. It is understood that certain non -nominal network
condit ions MAY prevent t imely t ransmission on part icular interfaces.

 — 112 —

© 2014 UPnP Forum. All Rights Reserved.

Table A-1: — Ma tching of Device Address to Multicast Scope

De vice Addr e s s Link-Local
m ult icas t

Site -Local
m ulticas t

Global or other
m ult icas t

L ink (link local) Y Never

Site (ULA) Y Never

Global (GUA) Y Never

A.2.4 Device operation

A device support ing both IPv4 and IPv6 simultaneously SHALL be advert ised using the same

Unique Service Name (USN) on all IPv4 and IPv6 interfaces and SHALL have identical de vice
description documents and service description documents when accessed from both protocols.
The URLBase element of the device descript ion document SHALL NOT be used. Dual stacked

devices should cons ider power contraints (such as radio act ivity in batte ry powered devices)
when sending mult iple NOTIFY and M -SEARCH messages (e.g. grouping message
t ransmission by service or address family). These devices SHALL also conform to other multi -

homed descript ions in the respect ive sect ions of the document.

A.2.5 Control point operation

Control points SHALL use the matching USNs of multiple IPv4 and IPv6 announcements to

t reat multi -address devices as a s ingle device. Dual stacked control points should consider
power contraints (such as radio activity in battery powered d evices) when sending mult iple
NOTIFY and M-SEARCH messages (e.g. queuing messages and grouping message

t ransmission by service or address family). In addition, control points SHALL also conform to
other mult i -homed descriptions in the respect ive sect ions o f this document.

A.3 Addressing

RFC 4862, RFC 4193 and RFC 3315 describe how a phys ical device obtains an IPv6 address.

IPv6 multicast addresses include a component (scope) which determines the propagat ion of a
message. The mult icast scope for UPnP SHALL be Li nk-Local or Site-Local scoped. The Site-
Local scope is encompassing of Link -Local. That is, Link -Local scope is contained in Site-

Local scope.

In IPv6 networks, a Link-Local IP address is ass igned per interface by the physical device,

and therefore UPnP devices or control points on IPv6-enabled devices wil l always have a
Link -Local address. In addit ion, a device or control point MAY or MAY NOT have a Unique
Local Address (ULA) or a Global Unicast Address (GUA) available to it. IPv6 devices or

control points are “multi -homed” when they run UPnP on one or more IPv6 addresses for an
interface: a Link -Local address for local link t raffic is always available, and a globally routable
address and/or a s ite-routable address, using a ULA, is available when the route r advertises a

prefix for use in either s tateless address autoconfigurat ion (SLAAC) or DHCPv6 supplied by
the home router. In some scenarios, devices or control points MAY only have a Link -Local
address available to them; reasons for this include underly ing device capabili ty, administ rat ive

policy , and availability of ULA and global prefixes. Link -Local addresses are generated by the
phys ical device itself, without referring to an outs ide router or server such as a DHCPv6
server.

Thus, there are two cons iderations for UPnP IPv6 addressing. The firs t is availability: If the
gateway/router does not advert ise a GUA or ULA prefix, then UPnP IPv6 addressing is st rict ly

Link -Local address ing. The second is policy: This Annex recommends that multicast
messages be sent using all non-temporary GUA, ULA, Link -Local, and IPv4 addresses as a
source address, that dest ination address select ion (from among the source addresses of the

mult icast messages)use an algorithm that results in cons istent selection behavior (def ault
algorithm is defined in RFC 6724), and subsequent source address selection fol low the
source address selec tion procedure described in RFC 6724.

 — 113 —

© 2014 UPnP Forum. All Rights Reserved.

In addition to the address(es) ass igned by this address selection process, each device or

control point, act ing as a normal IPv6 node, l istens for t raffic on several multicast addresses:
l ink-local scope all-nodes multicast address FF02::1; the site scope all -nodes multicast
address FF05: :1 and mult icast addresses of joined groups on each interface.

A.3.1 UPnP Messa ging on IPv6 Inte rfaces

At a minimum, a UPnP Device and a Control Point SHALL both lis ten and send on IPv6 Link -
Local scope multicast and unicast addresses. A UPnP device SHALL send announcements

and mult icast event ing messages to, and l isten for search requests on the assigned-to-UPnP
Link-Local scope mult icast addresses and receive connect ions on a Link -Local unicast
address that it has advert ised. A UPnP Control Point SHALL l isten for announcements and

mult icast eventing messages on the assigned-to-UPnP Link -Local scope mult icast addresses
and be capable of request ing service definit ions us ing a Link -Local unicast address.

Addit ionally, a UPnP Device and a Control Point SHALL be capable of both l istening and
sending on Site-Local scope multicast and s ite-routable (ULA or GUA) addresses. Whether or
not a particular Device or Control Point uses Site -Local scope is a policy dec is ion, based on

the availabili ty of site-routable addresses and on address select ion policy. In order to
accommodate rout ing across prefixes within a home network, this specificat ion REQUIRES
Site-Local scope capabili ty in UPnP Devices and Control Points .

A.3.2 Summary of boot/sta rtup process

 For IPv4, A uto-IP addressing is performed as specif ied in section 0 “Addressing” of this documen t.

 For IPv6, address ass ignment is performed as specif ied in RFC 4862, RFC 4193, and RFC 3315. This

address assignment is handled by the under ly ing IPv6 stack. That stack is expec ted to make all IPv6
addresses available to UPnP applications.

A.3.3 Address Se lection and RFC 6724

As described in the normative sections above, UPnP dual -s tack Devices operate both at IPv6

mult icast Link -Local scope and Site-Local scope, as well as IPv4 mult icast , by default, and
advert ise their services in SSDP messages sent in Site -Local scope IPv6 multicast packets in
addition to Link-Local scope mult icast . As explained above, the default is for UPnP dual -

stack devices to perform destinat ion address selection as explained in RFC 6724 (though
other algorithms can be used). Source address selection for unicast messages is based on a
selec ted dest ination address and done according to RFC 6724.

A.4 Discovery

The UPnP discovery phase does not substantially change when used over IPv6. All definit ions
of sect ion 1 “Discovery” of this document SHALL be followed, except when a change is

ment ioned in this sect ion.

IGMP is the protocol used by IPv4 to ensure that incoming mult icast t raffic is forwarded by a

router to the network segment to which the router is attached. IGMP requires that the devices
and control points attached to the network segment contact the router to notify it of their
interest in certain mult icast addresses. The protocol that provides this service in IPv6 is

Mult icast Listener Discovery protocol (MLD). UPnP Control points and d evices SHALL
part icipate in the MLD protocol (either direc tly, or indirect ly via APIs to an IPv6 stack) for any
Link -Local and Site-Local scope UPnP IPv6 mult icast message. MLDv1 as specified in RFC

2710 is suffic ient for UPnP, although more recent and backward-compatible vers ions of MLD
may be implemented.

IP addresses embedded in UPnP messages and descriptions sent in response to requests
received on IPv6 addresses will generally be literal addresses formatted according to RFC
3986 and RFC 5952 (inc luding those in discovery messages, the URLBase element of the

device description (if specified), and HTTP HOST header fields). In UDA 2.0, together with the
USN, the BOOTID.UPNP.ORG header field al lows control points to recognize when a
message received on a di fferent protocol or address is effectively the same message (in this

case, the BOOTID.UPNP.ORG field value will be the same in all announcements sent with

 — 114 —

© 2014 UPnP Forum. All Rights Reserved.

different addresses at roughly the same t ime), as opposed to being a new advert isement from

a device which has changed from one protocol or address to another (in which case, the
BOOTID.UPNP.ORG field value wil l differ between the old and the new announcement).

A.4.1 OPT and NLS

For backward compatibil ity with devices and control points implementing UPnP over I Pv6
according to the original provis ions of Annex A to UPnP Device Architecture vers ion 1.0; IPv6
enabled devices SHALL include an OPT header field and NLS header field and IPv6 enabled

control points SHALL recognize OPT and NLS header fields. The OPT head er field is defined
by the HTTP Extens ion Framework (RFC 2774); the OPT header field is used (rather than
MAN) because it is possible for a control point to function without recognizing the NLS header

field, although the user experience wil l be subopt imal (and IPv4-only control points may not
recognize NLS). The NLS field value, contains a s tring value which SHALL change whenever
the network configuration of the device changes (e.g., i f any of the ass igned or calculated IP

addresses change). It is recommended that a GUID (in the s tandard UUID tex t format, for
example, “0000002F-0000-0000-C000-000000000046”) be used for this purpose, since all
UPnP devices SHALL already have the ability to generate GUIDs; however, other techniques

are poss ible. Since under UP nP Device Architecture vers ion 1.1 and UDA 2.0 the
BOOTID.UPNP.ORG field value is required to be unique on each device reboot or
configuration change, the field value of the NLS header field can be set the same as the field

value of the BOOTID.UPNP.ORG header field to simplify implementat ion. The NLS value
SHALL be at least 1 and no more than 64 characters in length.

A.4.2 Advertisement

For IPv6, a device advert ises over IPv6 according to the fol lowing guidelines:

 SSDP announcements SHALL be sent to [FF0X::C]:1900 (w ith “X” being either 2 or 5 and set appropriately

depending on the mult icast scope upon w hich the announcement is being sent). Control points SHALL
lis ten to these addresses and ports to detect when new devices are available on the network.

 SSDP announcements SHA LL be sent us ing all non-temporary GUA , ULA, Link-Local, and IPv4 addresses.

For example, a UPnP dev ice w ith an IPv4 address, a Link-Local IPv6 address, a ULA and a GUA w ould
send 4 announcements.

 As descr ibed in section 1.2.2 “Device available – NOTIFY w ith ssdp:alive” of this document,

announcements sent over IPv6 and IPv4 SHA LL use the same CA CHE-CONTROL field value and SHALL
be sent w ithin a 20 ms w indow . When all advertisements, both over IPv4 and IPv6, have expired, the
control point SHALL assume that the device (or service) is no longer available.

 The SSDP HOST f ield value SHALL contain an IPv6 address instead of an IPv4 address.

 The SSDP LOCA TION f ield value contains the URL of the root dev ice descr iption document. Typically , a
literal IPv6 address formatted according to RFC 3986 w ill be used. An IPv6 address SHALL be contained
w ithin brackets if a port is spec if ied. The hos t address in the URL SHALL be valid w ithin the current scope

(the address or scope on w hich the announcement is being sent) . Spec if ically , a dev ice adver tising over
IPv6 SHA LL NOT use an IPv4 address in the SSDP LOCATION header f ield.

 The OPT and NLS header f ields SHALL be included [A.4.1].

The UDA 2.0 example below incorporates this syntax.

 NOTIFY * HTTP/1.1

 HOST: [FF02::C]:1900
 CACHE-CONTROL: max-age = seconds until advertisement expires

 LOCATION: URL for UPnP description of this device

 OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
 01-NLS: same value as BOOTID field value

 NT: notification type

 NTS: ssdp:alive
 SERVER: OS/version UPnP/2.0 product/version

 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or update

message

 CONFIGID.UPNP.ORG: number used for caching description information

 USN: composite identifier for the advertisement

 — 115 —

© 2014 UPnP Forum. All Rights Reserved.

A.4.3 Advertisement: Device unavai lable

When a device and its services are going to be removed from the network, the device

SHOULD mult icast an ssdp:byebye message corresponding to each of the ssdp:alive
messages it mult icasted that have not already expired. Similarly, i f an interface change
not ification is received after an announcement, the device should cancel exis ting

advert isements. Furthermore, devices need to remember their prior IP addresses in the event
that some or all of them have changed. If that is the case, new advert isements have to be
sent , us ing the same sequence described above.

All ssdp:byebye messages SHALL be sent to the IPv6 mult icast address as described in
section A.4.2 “Advert isement”, and SHALL contain the OPT and NLS header fields . Otherwise,

the behavior is the same as IPv4. A UDA 2.0 example of an ssdp:byebye message has the
fol lowing syntax.

 NOTIFY * HTTP/1.1

 HOST: [FF02::C]:1900
 NT: notification type

 OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
 01-NLS: same value as BOOTID field value

 NTS: ssdp:byebye
 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or update

message

 CONFIGID.UPNP.ORG: number used for caching description information

 USN: composite identifier for the advertisement

A.4.4 Advertisement: Device update

All ssdp:update messages SHALL be sent to the IPv6 mult icast address as described in
section A.4.2 “Advert isement”, and SHALL contain the OPT and NLS header fie lds . Otherwise,
the behavior is the same as IPv4. A UDA 2.0 example of an ssdp:update message has the

fol lowing syntax.

 NOTIFY * HTTP/1.1

 HOST: [FF02::C]:1900

 LOCATION: URL for UPnP description for root device

 NT: notification type

 OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
 01-NLS: same value as BOOTID field value

 NTS: ssdp:update
 USN: composite identifier for the advertisement

 BOOTID.UPNP.ORG: BOOTID value that the device has used in its previous announcements

 CONFIGID.UPNP.ORG: number used for caching description information

 NEXTBOOTID.UPNP.ORG: new BOOTID value that the device will use in subsequent announcements

 SEARCHPORT.UPNP.ORG: number identifies port on which device responds to unicast M-SEARCH

A.4.5 Search

When a control point is added to the network, it SHALL send mult icast M -SEARCH requests

on all non-temporary GUA, ULA, Link -Local, and IPv4 addresses. As ide from us ing an IPv6
mult icast address and inc luding an IPv6 address in the header fields, M -SEARCH messages
are unchanged. An example of an M -SEARCH message has the fol lowing syntax. In addit ion,

M-SEARCH messages MAY be unicast to IPv6 addresses of known devices, s imilar to IPv4
unicast M-SEARCH messages.

 M-SEARCH * HTTP/1.1

 HOST: [FF02::C]:1900

 MAN: "ssdp:discover"
 MX: seconds to delay response

 ST: search target

 — 116 —

© 2014 UPnP Forum. All Rights Reserved.

A.4.6 Search response

To be found, a device SHALL send a response to the source IP address and port that sent the

request to the mult icast address, and SHALL include the OPT and NLS he ader fields in the
message. It SHALL selec t a source address for this response according to RFC 6724. A UDA
2.0 example of a search response message has the fol lowing syntax.

 HTTP/1.1 200 OK
 CACHE-CONTROL: max-age = seconds until advertisement expires

 DATE: when response was generated

 EXT:
 LOCATION: URL for UPnP description of this device

 SERVER: OS/version UPnP/2.0 product/version

 OPT: "http://schemas.upnp.org/upnp/1/0/"; ns=01
 01-NLS: same value as BOOTID field value

 ST: search target

 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or update

message

 CONFIGID.UPNP.ORG: number used for caching description information

 USN: composite identifier for the advertisement

A.5 Description

Descript ion documents SHALL be sent using the same address on which the HTTP GET was
received. Otherwise, behavior is the same as IPv4.

A.6 Control

Responses to SOAP messages during the Control phase SHALL be sent on the same address
on which the request was received. Otherwise, behavior is the same as IPv4.

A.7 Eventing

When subscribing to events over IPv6, the <deliveryURL> (or URLs) specified in the

CALLBACK header field of the SUBSCRIBE message SHALL be reachable by the device.
This means, for example, when sending a SUBSCRIBE request to a device using a Link -Local
IPv6 address, the <deliveryURL> SHALL the same IPv6 address used as the source address,

which is a node’s Link -Local address.

IPv4 addresses SHALL NOT be inc luded in the CALLBACK header field of a SUBSCRIBE

message sent over IPv6. IPv6 addresses SHALL NOT be inc luded in the CALLBACK header
field of a SUBSCRIBE message sent over IPv4.

IPv6 multicast event messages SHALL be sent to [FF0X::130]:7900 (with “X” being equal to
the address scope used in advert isement). To receive IPv6 multicast event messages, control
points SHALL l is ten to these addresses and ports .

To send a multicast event message, a publisher SHALL send a message with method NOTIFY
in the fol lowing format. Values in ital ics below are placeholders for actual values. Refer to

section 4.3.3 “Multicast Event ing: Event messages: NOTIFY” of this document for an
explanation of the elements. All IP addresses contained in the event SHALL be IPv6 format
and scoped as above. A UDA 2.0 example mult icast event message has the fol lowing syntax.

 NOTIFY * HTTP/1.1

 HOST: [FF0X::130]:7900 *** note the address and the port number are different from

SSDP ***

 CONTENT-TYPE: text/xml; charset="utf-8"
 USN: Unique Service Name for the publisher

 SVCID: ServiceID from SCPD

 NT: upnp:event

 NTS: upnp:propchange
 SEQ: monotonically increasing sequence count

 — 117 —

© 2014 UPnP Forum. All Rights Reserved.

 LVL: event importance

 BOOTID.UPNP.ORG: number increased each time device sends an initial announce or an update

message

 <?xml version="1.0"?>
 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">

 <e:property>

 <variableName>new value</variableName>

 </e:property>

 <!-- Other variable names and values (if any) go here. -->

 </e:propertyset>

A.8 Presentation

Responses to HTTP GET requests for presentation pages SHALL be sent us ing the same
address on the same interface on which the HTTP GET was received.

Presentation pages ret rieved over IPv6 SHALL NOT contain IPv4 addresses. Presentation
pages ret rieved over IPv4 SHALL NOT contain IPv6 addresses.

It is RECOMMENDED that fully qualified URLs to resources on the device are not embedded
in HTML presentation pages, but that relat ive URLs are used instead, so that the host portion

of the embedded URLs does not need to be mod ified to match the address on which the GET
was received.

A.9 References

A.9.1 Normative

BCP 0005

A ddress Allocation for Pr ivate Internets. Available at: http://www.ietf.org/rfc/rfc1918.txt

IANA

Internet Protocol Version 6 Mult icast Addresses. Available at: http://www .iana.org/assignments /ipv6-mult icast-
addresses/.

RFC 3986

For mat for Literal I Pv6 Addresses in URLs. Available at: http://www.ietf.org/rfc/rfc3986.txt.

RFC 2774

HTTP Ex tension Framework. Available at: http://www.ietf.org/rfc/rfc2774.txt.

RFC 4862

I Pv6 Stateless Address Autoconfiguration. Available at: http://www.ietf.org/rfc/rfc4862.txt.

RFC 3315

Dynamic Host Configuration Protocol for IPv6 (DHCPv6). Available at: http://www.ietf.org/rfc/rfc3315.txt.

RFC 6724

Default Address Selection for Internet Protocol version 6 (IPv6). Available at:

ht t p://www.ietf.org/rfc/rfc6724.txt.

RFC 3879

Depr ecating Site-local Addresses. Available at: http://www.ietf.org/rfc/rfc3879.txt.

RFC 3986

Uniform Resource I dentifiers (URI): Generic Syntax. Available at: http://www.ietf.org/rfc/rfc3986.txt.

RFC 4291

I P Version 6 Addressing Architecture. Availab le at: http://www.ietf.org/rfc/rfc4291.txt.

http://www.ietf.org/rfc/rfc1918.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2774.txt
http://www.ietf.org/rfc/rfc2462.txt
http://www.ietf.org/rfc/rfc3315.txt
http://www.ietf.org/rfc/rfc6724.txt
http://www.ietf.org/rfc/rfc3879.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4291.txt

 — 118 —

© 2014 UPnP Forum. All Rights Reserved.

RFC 4861

Neighbor Discovery for IP Version 6 (IPv6). Available at: http://www.ietf.org/rfc/rfc4861.txt.

RFC 4193

Unique Local I Pv6 Unicast Addresses. Available at: http://www.ietf.org/rfc/rfc4193.txt.

RFC 5952

A Recommendation for IPv6 Address Text Representation. Available at: http://www.ietf.org/rfc/rfc5952.txt.

RFC 3633

I Pv6 Prefix Options for DHCPv6. Available at: http://www.ietf.org/rfc/rfc3633.txt.

RFC 4941

Pr ivacy Extensions for Stateless Address Autoconfiguration in IPv6. Available at:

ht t p://www.ietf.org/rfc/rfc4941.txt.

A.9.2 Informative

RFC 3493

Bas ic Socket Interface Ex tensions for IPv6. A vailable at: http://www.ietf.org/rfc/rfc3493.txt.

RFC 6540 (BCP 177)

IPv6 Suppor t Required for all IP-capable Nodes. Available at: http://www.ietf.org/rfc/rfc6540.txt .

[1]

 This is the unicast address used by the device or control point in its mult icast messages, i.e.

the source IP address in the multicast messages, as well as the LOCATION URL for
advert isement messages s ent by devices.

http://www.ietf.org/rfc/rfc4861.txt
http://www.ietf.org/rfc/rfc4193.txt
http://www.ietf.org/rfc/rfc5952.txt
http://www.ietf.org/rfc/rfc3633.txt
http://www.ietf.org/rfc/rfc4941.txt
http://www.ietf.org/rfc/rfc3493.txt
http://www.ietf.org/rfc/rfc6540.txt
https://members.upnp.org/DocViewPopup.asp?VersionID=8008#_ftnref1

 — 119 —

© 2014 UPnP Forum. All Rights Reserved.

Annex B Schemas

[Informative]

B.1 UPnP Device Schema

Below is the UPnP Device Schema for devices (see also section 2.10, “UPnP Datatype
Schema”). The elements it defines are used in UPnP Device Templates; they are colored
green throughout this specificat ion. Immediately fol lowing this is a brief explanat ion of the XML

Schema elements, att ributes, and values used. The reference to XML Schema at the end of
the sect ion has further details .

UPnP 1.0 spec ifies that the namespace of the device schema is “urn:schemas -upnp-
org:device-1-0”. UPnP 2.0 does not change that namespace, but redefines it in a backwards -

compatible way by restric ting the order in which elements can be sent and REQUIRING the
presence of the configId att ribute. Therefore, the schema below specifies the syntax to

which a UPnP 2.0 Device Descript ion Document has to adhere. UPnP 2.0 control points also
should expect Device Descript ion Documents from UPnP 1.0 devices that can send elements
in any order, and wil l not have the configId at tribute.

<xsd:schema targetNamespace="urn:schemas-upnp-org:device-1-0"

 xmlns="urn:schemas-upnp-org:device-1-0"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="root" type="rootType"/>

 <xsd:complexType name="deviceType">

 <xsd:sequence>

 <xsd:element name="deviceType">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="friendlyName">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="manufacturer">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="manufacturerURL" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="modelDescription" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 — 120 —

© 2014 UPnP Forum. All Rights Reserved.

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="modelName">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="modelNumber" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="modelURL" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="serialNumber" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="UDN">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="UPC" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="iconList" minOccurs="0">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="icon" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="mimetype">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="width">

 <xsd:complexType>

 <xsd:simpleContent>

 — 121 —

© 2014 UPnP Forum. All Rights Reserved.

 <xsd:extension base="xsd:int">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="height">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:int">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="depth">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:int">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="url">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="serviceList">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="service" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="serviceType">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="serviceId">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="SCPDURL">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 — 122 —

© 2014 UPnP Forum. All Rights Reserved.

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="controlURL">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="eventSubURL">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="deviceList" type="deviceListType" minOccurs="0"/>

 <xsd:element name="presentationURL" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 <xsd:complexType name="deviceListType">

 <xsd:sequence>

 <xsd:element name="device" type="deviceType" maxOccurs="unbounded"/>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 <xsd:complexType name="rootType">

 <xsd:sequence>

 <xsd:element name="specVersion">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="major">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:int">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="minor">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:int">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 — 123 —

© 2014 UPnP Forum. All Rights Reserved.

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="URLBase" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:anyURI">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="device" type="deviceType"/>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:attribute name="configId" type="xsd:int"/>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

</xsd:schema>

<element>

Def ines a new element. name attr ibute defines element name. type attr ibute def ines the data type for the

content of element. minOccurs attr ibute defines minimum number of t imes the element shall occur ; default is

minOccurs="1"; allow ed elements have minOccurs="0". maxOccurs attr ibute def ines max imum number of

t imes the element shall occur; default is maxOccurs="1"; elements that can appear one or more t imes have
maxOccurs="unbounded". For a more detailed description, see the XML Schema specif ication.

<complexType>

Def ines a new data type, often containing sub-elements. For a more detail description, see the XML Schema
spec if ication.

<attribute>

Def ines a new attr ibute for the purpose of dec laring in w hich elements it MAY appear . Like any XML element,

the <attr ibute> element MAY have attributes of its ow n. The use attr ibute w ithin this element indicates w hether

the attr ibute shall be present; allow ed attr ibutes have use="optional". For a more detail description, see
the XML Schema specif ication.

B.2 UPnP Service Schema

Below is the UPnP Service Schema (see also section 2.9, “UPnP Service Schema”). The
elements it defines are used in UPnP Service Templates; they are colored green throughout

this specification. Immediately fol lowing this is a brief explanat ion of the XML Schema
elements , att ributes, and values used. The reference to XML Schema at the end of the
sect ion has further details.

UPnP 1.0 specifies that the namespace of the service schema is “urn:schemas -upnp-
org:service-1-0”. UPnP 2.0 does not change that namespace, but redefines it in a backwards -

compatible way by restricting the order in which elements can be sent and requiring the
presence of the configId att ribute. Therefore, the schema below specifies the syntax to

which a UPnP 2.0 SCPD has to adhere. UPnP 2.0 control points also should expect SCPDs

from UPnP 1.0 devices that can send elements in any order, and will not have the configId

at t ribute.

<xsd:schema targetNamespace="urn:schemas-upnp-org:service-1-0"

 xmlns="urn:schemas-upnp-org:service-1-0"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="scpd" type="scpdType"/>

 — 124 —

© 2014 UPnP Forum. All Rights Reserved.

 <xsd:complexType name="directionType">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:complexType name="dataTypeType">

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="type" type="xsd:string"/>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:complexType name="scpdType">

 <xsd:sequence>

 <xsd:element name="specVersion">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="major">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:int">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="minor">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:int">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="actionList" minOccurs="0">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="action" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="argumentList" minOccurs="0">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="argument" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other"

 processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 — 125 —

© 2014 UPnP Forum. All Rights Reserved.

 <xsd:element name="direction">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:restriction base="directionType">

 <xsd:enumeration value="in"/>

 <xsd:enumeration value="out"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="retval" minOccurs="0">

 <xsd:complexType>

 <xsd:complexContent>

 <xsd:restriction base="xsd:anyType">

 <xsd:anyAttribute namespace="##other"

 processContents="lax"/>

 </xsd:restriction>

 </xsd:complexContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="relatedStateVariable">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other"

 processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="serviceStateTable">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="stateVariable" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="name">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="dataType">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:restriction base="dataTypeType">

 <xsd:enumeration value="ui1"/>

 <xsd:enumeration value="ui2"/>

 — 126 —

© 2014 UPnP Forum. All Rights Reserved.

 <xsd:enumeration value="ui4"/>

 <xsd:enumeration value="i1"/>

 <xsd:enumeration value="i2"/>

 <xsd:enumeration value="i4"/>

 <xsd:enumeration value="int"/>

 <xsd:enumeration value="r4"/>

 <xsd:enumeration value="r8"/>

 <xsd:enumeration value="number"/>

 <xsd:enumeration value="fixed.14.4"/>

 <xsd:enumeration value="float"/>

 <xsd:enumeration value="char"/>

 <xsd:enumeration value="string"/>

 <xsd:enumeration value="date"/>

 <xsd:enumeration value="dateTime"/>

 <xsd:enumeration value="dateTime.tz"/>

 <xsd:enumeration value="time"/>

 <xsd:enumeration value="time.tz"/>

 <xsd:enumeration value="boolean"/>

 <xsd:enumeration value="bin.base64"/>

 <xsd:enumeration value="bin.hex"/>

 <xsd:enumeration value="uri"/>

 <xsd:enumeration value="uuid"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="defaultValue" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:choice minOccurs="0">

 <xsd:element name="allowedValueList">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="allowedValue" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="allowedValueRange">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="minimum">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:double">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="maximum">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:double">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 — 127 —

© 2014 UPnP Forum. All Rights Reserved.

 <xsd:element name="step" minOccurs="0">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:double">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:attribute name="sendEvents" default="1">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="1"/>

 <xsd:enumeration value="0"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="multicast" default="0">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="1"/>

 <xsd:enumeration value="0"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

 </xsd:sequence>

 <xsd:attribute name="configId" type="xsd:int"/>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

</xsd:schema>

<element>

Def ines a new element. name attr ibute defines element name. type attr ibute def ines the data type for the

content of element. minOccurs attr ibute defines minimum number of t imes the element shall occur ; default is

minOccurs="1"; allow ed elements have minOccurs="0". maxOccurs attr ibute def ines max imum number of

t imes the element shall occur; default is maxOccurs="1"; elements that can appear one or more t imes have
maxOccurs="unbounded". For a more detailed description, see the XML Schema specif ication.

<complexType>

Def ines a new data type, often containing sub-elements. For a more detail description, see the XML Schema
spec if ication.

<attribute>

Def ines a new attr ibute for the purpose of dec laring in w hich elements it MAY appear . Like any XML element,

the <attr ibute> element MAY have attributes of its ow n. The use attr ibute w ithin this element indicates w hether

the attr ibute shall be present; allow ed attr ibutes have use="optional". For a more detail description, see
the XML Schema specif ication.

 — 128 —

© 2014 UPnP Forum. All Rights Reserved.

B.3 UPnP Control Schema

Below is the template for UPnP Control Schemas (see also section 3.2.3, “UPnP Action
Schema”). The elements i t defines are used in ac tions and act ion responses; they are colored
green throughout this specificat ion. Immediately fol lowing this is a brief explanat ion of the XML

Schema elements, att ributes, and values used. The reference to XML Schema at the end of
the sect ion has further details .

<xsd:schema targetNamespace="urn:schemas-upnp-org:service:[serviceType:v]"

 xmlns="urn:schemas-upnp-org:service:[serviceType:v]"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="[actionName]" type="[actionName]Type"/>

 <xsd:element name="[actionName]Response" type="[actionName]ResponseType"/>

 <xsd:complexType name="[actionName]Type">

 <xsd:sequence>

 <!-- Use this for an argument of simple content. -->

 <xsd:element name="[argumentName]">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="[argumentType]">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <!-- Use this for an argument of complex content. -->

 <xsd:element name="[argumentName]" type="[argumentType]"/>

 <!-- Other arguments and their types go here, if any. -->

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 <xsd:complexType name="[actionName]ResponseType">

 <xsd:sequence>

 <!-- Use this for an argument of simple content. -->

 <xsd:element name="[argumentName]">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="[argumentType]">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <!-- Use this for an argument of complex content. -->

 <xsd:element name="[argumentName]" type="[argumentType]"/>

 <!-- Other arguments and their types go here, if any. -->

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

</xsd:schema>

<element>

Def ines a new element. name attr ibute defines element name. type attr ibute def ines the data type for the

content of element. minOccurs attr ibute defines minimum number of t imes the element shall occur ; default is

minOccurs="1"; allow ed elements have minOccurs="0". maxOccurs attr ibute def ines max imum number of

t imes the element shall occur; default is maxOccurs="1"; elements that can appear one or more t imes have

maxOccurs="unbounded". For a more detailed description, see the XML Schema specif ication.

<complexType>

Def ines a new data type, often containing sub-elements. For a more detail description, see the XML Schema
spec if ication.

<attribute>

Def ines a new attr ibute for the purpose of dec laring in w hich elements it MAY appear . Like any XML element,

the <attr ibute> element MAY have attributes of its ow n. The use attr ibute w ithin this element indicates w hether

 — 129 —

© 2014 UPnP Forum. All Rights Reserved.

the attr ibute shall be present; allow ed attr ibutes have use="optional". For a more detail description, see
the XML Schema specif ication.

B.4 UPnP Error Schema

Below is the template for UPnP Error Schemas (see also sect ion 3.2.6, “UPnP Error Schema”).
The elements it defines are used in error messages; they are colored green throughout this

spec ification. Immediately following this is a brief explanat ion of the XML Schema elements,
att ributes, and values used. The reference to XML Schema at the end of the section has

further details .

<xsd:schema targetNamespace="urn:schemas-upnp-org:control-1-0"

 xmlns="urn:schemas-upnp-org:control-1-0"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="UPnPError" type="UPnPErrorType"/>

 <xsd:complexType name="UPnPErrorType">

 <xsd:sequence>

 <xsd:element name="errorCode">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:int">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="errorDescription">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

</xsd:schema>

<element>

Defines a new element. name attribute defines element name. type attribute defines the data type for the

content of element. minOccurs attribute defines minimum number of times the element shall occur; default
is minOccurs="1"; a llowed elements have minOccurs="0". maxOccurs attribute defines max imum number of
times the element shall occur; default is maxOccurs="1"; elements that can appear one or more t imes have

maxOccurs="unbounded". For a more detailed description, see t he XML Schema specification.

<complexType>

Defines a new data type, often containing sub-elements. For a more detail description, see the XML Schema

spec ification.

<attribute>

Defines a new attribute for t he purpose of dec lar ing in which elements it MAY appear. Like any XML element,

the <attribute> element MAY have attributes of its own. The use attribute within this element indicates
whether the attribute shall be present; allowed attributes have use="optional". For a more detail descript ion,

see t he XML Schema specification.

B.5 UPnP Event Schema

Below is the template for the UPnP Event Schema (see also sect ion 4.4, “UPnP Event
Schema”). The elements it defines are used in event notificat ions; they are colored green

throughout this spec ification. Immediately following this is a brief explanat ion of the XML

Schema elements, att ributes, and values used. The reference to XML Schema at the end of
the sect ion has further details .

 — 130 —

© 2014 UPnP Forum. All Rights Reserved.

<xsd:schema targetNamespace="urn:schemas-upnp-org:event-1-0"

 xmlns="urn:schemas-upnp-org:event-1-0"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="propertyset" type="propertysetType"/>

 <xsd:complexType name="propertysetType">

 <xsd:sequence>

 <xsd:element name="property" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <!-- Use this for a stateVariable of simple content. -->

 <xsd:element name="[stateVariableName]" form="unqualified">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="[stateVariableType]">

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <!-- Use this for a stateVariable of complex content. -->

 <xsd:element name="[stateVariableName]" type="[stateVariableType]"

 form="unqualified"/>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace="##other" processContents="lax"/>

 </xsd:complexType>

</xsd:schema>

<element>

Defines a new element. name attribute defines element name. type attribute defines the data type for the
content of element. minOccurs attribute defines minimum number of times the element shall occur; default
is minOccurs="1"; a llowed elements have minOccurs="0". maxOccurs attribute defines max imum number of

times the element shall occur; default is maxOccurs="1"; elements that can appear one or more t imes have
maxOccurs="unbounded". For a more detailed description, see t he XML Schema specification.

<complexType>

Defines a new data type, often containing sub-elements. For a more detail description, see the XML Schema
spec ification.

<attribute>

Defines a new attribute for t he purpose of dec lar ing in which elements it MAY appear. Like any XML element,
the <attribute> element MAY have attributes of its own. The use attribute within this element indicates

whether the attribute shall be present; allowed attributes have use="optional". For a more detail descript ion,
see t he XML Schema specification.

B.6 UPnP Cloud Schema

Below is the UPnP Device Schema for Cloud (see Annex C). The elements it defines are used
in UPnP Cloud Templates; they are colored blue trebuchet underlined throughout this

spec ification.

The schema below specifies the syntax to which a UPnP 2.0 Device or UPnP 2.0 control

points conforms to when support ing Annex C (Cloud 1.0).

<?xml version="1.0"?>

<x sd:schema

 attributeFormDefault="unqualified"

 elementFormDefault="qualified"

 targetNamespace="urn:schemas-upnp.org:cloud-1-0"

 xmlns="urn:schemas-upnp.org:cloud-1-0"

 — 131 —

© 2014 UPnP Forum. All Rights Reserved.

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <x sd:annotation>

 <xsd:documentation xml:lang="en">

 Date August 12, 2014

 Note that all schema supplied by the UPnP Forum Cloud Task Force are for

 informational use only and that thestandardized UDA describes the

 normative requirements for these schema. Some schema provided do not

 necessarily embody requirements regarding number of element occurrances

 allowed or their ordering or specific combination.

 </xsd:documentation>

 </xsd:annotation>

 <x sd:simpleType name="hashType">

 <xsd:restriction base="xsd:string">

 <x sd:enumeration value="sha-256"/>

 </xsd:restriction>

 </xsd:simpleType>

 <x sd:simpleType name="typeType">

 <xsd:restriction base="xsd:string">

 <x sd:enumeration value="describe"/>

 <x sd:enumeration value="described"/>

 <x sd:enumeration value="error"/>

 </xsd:restriction>

 </xsd:simpleType>

 <!--==

 In UCA 1.0 <uc> and <query> elements are not expected to occur in

 the same UCA stanza.

 ==-->

 <x sd:element name="uc">

 <xsd:complexType>

 <x sd:sequence>

 <xsd:element name="configIdCloud" minOccurs="0" maxOccurs="1">

 <x sd:complexType>

 <x sd:simpleContent>

 <x sd:extension base="xsd:string">

 <xsd:attribute name="hash" type="hashType" use="required"/>

 <!-- In UCA 1.0 the only expected value for the "hash"

 attribute is "sha-256" -->

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <x sd:attribute type="xsd:string" name="serviceId" use="optional"/>

 <!-- In UCA 1.0 serviceId attribute and configIdCloud element are not

 expected to be used in the same <uc> element -->

 </xsd:complexType>

 </xsd:element>

 <x sd:element name="query">

 <xsd:complexType>

 <x sd:sequence>

 <xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"

 processContents="lax"/>

 </xsd:sequence>

 <x sd:attribute type="xsd:string" name="type" use="required"/>

 <!-- In UCA 1.0 the only expected values for the "type"

 attribute is "describe", "described", and "error"

 and only in specific scenarios -->

 <x sd:attribute type="xsd:string" name="name" use="required"/>

 <!-- In UCA 1.0 the expected value for the "name"

 attribute is the USN -->

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

<element>

Defines a new element. name attribute defines element name. type attribute defines the data type for the
content of element. minOccurs attribute defines minimum number of times the element shall occur; default
is minOccurs="1"; a llowed elements have minOccurs="0". maxOccurs attribute defines max imum number of

 — 132 —

© 2014 UPnP Forum. All Rights Reserved.

times the element shall occur; default is maxOccurs="1"; elements that can appear one or more t imes have

maxOccurs="unbounded". For a more detailed description, see t he XML Schema specification.

<complexType>

Defines a new data type, often containing sub-elements. For a more detail description, see the XML Schema

spec ification.

<attribute>

Defines a new attribute for t he purpose of dec lar ing in which elements it MAY appear. Like any XML element,

the <attribute> element MAY have attributes of its own. The use attribute within this element indicates
whether the attribute shall be present; allowed attributes have use="optional". For a more detail descript ion,

see t he XML Schema specification.

B.7 Schema references

XML
Extens ible Markup Language. Available at: ht tp: //www.w3.org/XML.

XML Schema (Part 1: Structures, Part 2: Da ta types)
Available at: ht tp://www.w3.org/TR/xmlschema-1, http://www.w3.org/TR/xmlschema-2.

Namespaces in XML
Available at: ht tp://www.w3.org/TR/REC-xml-names/.

http://www.w3.org/XML
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/REC-xml-names/

 — 133 —

© 2014 UPnP Forum. All Rights Reserved.

Annex C Cloud

[Normative]

C.1 Introduction

C.1.1 What is UPnP™ Cloud Technology (UCA)?

UPnP™ Cloud technology is an extension to the basic UPnP arc hitec ture described in 0
through 5 enabling Device to Device connect ivity across the internet (aka “Cloud”). It is

des igned to re-use, in a managed way, as much of the existing, easy -to-use, flexible,
standards -based connect ivity currently assoc iated with UPnP when connect ing across the
Internet. Using the open standards based Extensible Messaging and Presence Protocol

(XMPP – see section C.4) the UCA binds the familiar UPnP protocols for Address ing,
Discovery , Description, Eventing, and Control 5 to XMPP in a reliable, secure “Cloud”
compatible way. This spec ific combinat ion as described in this annex embodies the UPnP

Cloud Annex or UCA.

UCA support is al lowed. If UCA is implemented for a device or control point then the device or

control point shall support all the required clauses of this annex for a UCCD and UCC-CP
respect ively. A UCS may also be implemented. If implemented, the UCS shall support all
required c lauses of a UCS in this annex.

C.1.2 Audience

The audience for this A nnex inc ludes UPnP device and control point vendors, UPnP Cloud
infrastructure providers, and members of UPnP Forum working commit tees, a nd anyone else

who has a need to unders tand the technical details of UPnP Cloud protocols .

This annex assumes the reader is familiar with the UDA Protocols (HTTP, SOAP, SSDP,

GENA, TCP, UDP, IP, XML) as well as RESTful APIs; this annex makes no attempt to explain
them. This annex also assumes most readers will be new to XMPP, and while it is not an
XMPP tutorial, XMPP-related issues are addressed in detail given the centrality of XMPP to

the UCA. This annex makes no assumpt ions about the readers ' understanding of various
programming or script ing languages.

C.1.3 In this Annex

The UPnP Cloud Annex defines both the required binding of the UDA protocols to XMPP and
the required control point, device, and infrastruc ture c omponents needed to implement UPnP
Cloud, inc luding Client(UCCD and UCC-CP), Server(UCS), and add on Services (see section

C.7).

Components of the UPnP Device Architecture for addressing, discovery, descript ion, event ing

and control, contained herein define only extens ions or equivalent replacements for those
protocol components required for communication over XMPP us ing the UCA. All interaction
and protocol descriptions associated with the t radit ional UPnP Device Architecture remain

unchanged, when us ing UCA, unless specifically modified in this specification. UDA when
used in a local network remains unchanged.

The tex t in this specificat ion uses the following fonts to indicate the protocol components as
fol lows:

5 A n equivalent for UDA Presentation is not prov ided in UCA as this is cons idered a potential secur ity issue. If a

dev ice or service presentation URL is presented it should be i gnore by UCCDs and UCC-CPs .

 — 134 —

© 2014 UPnP Forum. All Rights Reserved.

XMPP – Bold Red Courier underlined .

UCA – Bold, Blue Trebuchet underlined .

UPnP Device Architec ture – same fonts as in UDA 1.1.

Pure Theory of operat ions (TOPs) example tex t wil l be in black courier new with a

shaded background (not necessari ly gray)6.

Addit ionally , c larify ing tex t is sometimes inc luded. There are two general forms:

1) Extrac ts from relevant XMPP spec ification indicated by an XEP or RFC reference fol lowed
by tex t enc losed in a box (see below).

From XEP or RFC

Extrac ted relevant tex t from XEP or RFC goes here.

2) Implementat ion warnings shown as a "caut ion s ign symbol" with explanatory tex t (see
below).

Implementat ion caution goes here.

6 Note: example text can contain whitespace and line feeds to improve readability .

 — 135 —

© 2014 UPnP Forum. All Rights Reserved.

C.1.4 UDA compared to UCA

Figure C-1 provides a high level comparison of the ex ist ing UDA protocol stack with the UCA

protocol stack 7 . In contrast to UDA, al l UCA communicat ions are unicast, secure, and

essential ly reliable s ince it is over TCP/IP. Thus, the original UDP components are not

included in the UCA. Also, the delivery method for the equivalent SOAP and GENA

components are via XMPP instead of HTTP. It is possible for a device to expose one or more

interfaces on both its l ink -local and cloud networks. Control points interacting with mult iple

interfaces, inc luding both UDA and UCA compat ible devices, can determine if the device(s)

are the same by comparing their UDNs just as described in the multi -homed description in

UDA.

Figure C-1: — Protocol stacks UDA versus UCA8

UPnP vendor [purple -ital ic]

UPnP Forum [red-ital ic]

UPnP De vic e A rc h ite c ture [g re e n -bo ld]

SSDP [blue]
Multic ast e ve nts

[navy -bo ld]

SOAP [blue]
GENA

[navy -bo ld]

HTTP [black] HTTP [black]

UDP [black] TCP [black]

I P [black]

UDA

UPnP vendor [purple -ital ic]

UPnP Forum [red-ital ic]

UPnP De vic e A rc h ite c ture [g re e n -bo ld]

SSDP equivalent
mapped t o X MPP

pr esence

[blue]

Multic ast e ve nts
e quivalent mappe d to

X MPP “pubsub ”

 [navy -bo ld]

SOAP mapped t o X MPP
SOAP suppor t

 [blue]

GENA e qu ivale nt
mappe d to X MPP

“pubsub”

 [navy -bo ld]

X MPP [re d bo ld unde rline d]

TLS/SASL

TCP [black]

I P [black]

UCA

Figure C-2 provides a more detailed description of the UCA protocol stack. In this figure, two

types of communication scenarios are il lust rated. In scenario 1 (top) a UPnP Cloud Capable

7 Dif f erences are highlighted in grey.

8 Note that f onts are color coded. See section "UCA Steps as Analogies to UDA " for additional information.

 — 136 —

© 2014 UPnP Forum. All Rights Reserved.

Device (aka UCCD9) or UPnP Cloud Capable Control Point (aka UCC-CP) connects through

an infrastruc ture XMPP Server (aka UCS) to another UCCD, UCC -CP, or UCOD. This is a

typical D2D communicat ion scenario.

When UCCDs and UCC-CPs have different users (i llus t rated) the connection is typically of the

type Client A (UCCD or UCC-CP) connects to server A which connects to server B which

connects to Client B (UCCD or UCC-CP). When UCCDs and UCC-CPs have the same user

(not il lust rated) the connection will be of type Client A1 (UCCD or UCC -CP) connects to

server A which connects to Client A2 (UCCD or UCC-CP), i .e. there is only one server in the

path.

Another scenario (bot tom) has the UCCDs and UCC-CPs connecting to devices (UCODs) and
services (UCOSs) that ex is t only in the c loud.

Figure C-2: — Protocol stack UCA UCCD/UCC-CP and UCA Servers (UCS or UCOD)

UPnP as de sc r ibe d
in UCA fo r

De vice and Contro l Po in t

 UPnP as de sc r ibe d
in UCA fo r

De vice and Contro l Po in t

UPnP vendor [purple-italic] UPnP vendor [purple-italic]

UPnP Forum [red-ital ic] UPnP Forum [red-ital ic]

UPnP De vice Architecture
[g re e n -bo ld]

 UPnP De vice Architecture

[g re e n -bo ld]

SSDP, SOAP, GENA

equivalent mapped t o
X MPP X ML St r eam [blue]

X MPP X ML St r eam +

X MPP pubsub
[blue]

 X MPP X ML St r eam +

X MPP pubsub
 [blue]

 SSDP, SOAP, GENA

equivalent mapped t o
X MPP X ML St r eam [blue]

X MPP [re d bo ld
unde rline d]

X MPP [re d bo ld

unde rline d]
 X MPP [re d bo ld

unde rline d]
 X MPP [re d bo ld

unde rline d]

TLS/SASL TLS/SASL TLS/SASL TLS/SASL

UDP/TCP UDP/TCP UDP/TCP UDP/TCP

I P I P I P I P

UCCD/UCC-CP(A) Server(A) Server(B) UCCD/UCC-CP(B)

9 See sec tion "Terms and Definitions" for related abbreviations.

UPnP C loud Communicat ion v ia UCS

ser ver s

 — 137 —

© 2014 UPnP Forum. All Rights Reserved.

UPnP as de sc r ibe d

in UCA fo r
De vice and Contro l Po in t

 UPnP as de sc r ibe d
in UCA fo r

De vic e and Co ntro l
Po in t

UPnP vendor [purple-italic]
 UPnP vendor [purple -

ital ic]

UPnP Forum [red-ital ic] UPnP Forum [red-italic]

UPnP De vice Architecture
[g re e n -bo ld]

 UPnP De vic e

A rchitecture [g re e n -

bo ld]

SSDP, SOAP, GENA
equiv alent mapped t o

X MPP X ML St r eam [blue]

X MPP X ML St r eam +

pubsub

 [blue]

X MPP X ML St r eam

[blue]

X MPP [re d bo ld

unde rline d]

X MPP [re d bo ld

unde rline d]

TLS/SASL TLS/SASL Ser ver t o Ser ver

UDP/TCP UDP/TCP Communicat ion

I P I P is int er nal

UCCD Server UCOD

 UCC-CP (UCS) (UCCD in Cloud)

XMPP defines a technique for connect ing over HTTP known as BiDirect ion -st reams Over
Synchronous HTTP (BOSH [XEP-0138]) which is targeted for browser based applicat ions but
not spec ifically l imited to that use case. UCA support for BOSH is described in C.13.

In some cases, communications is only needed between the UCCD or UCC -CP and a UCS.
Typical examples include: management of status and settings where a UCCD or UCC -CP

communicates direc tly with its UCS; creating and publishing PubSub events where a UCCD or

UCC-CP communicates with an add-on service discovered on its UCS; or subscribing and

ret rieving PubSub events with the UCS of a connected UCCD or UCC-CP from another user.

These communication types are further defined in the next sect ion.

C.1.5 UCA General Communications Pa ths

As mentioned previously , UCA offers two paradigms for communication 1) UCCDs and UCC -
CPs belonging to the same user (see term user) registered to the same account (see term
account) communicat ing with each other and 2) UCCDs and UCC-CPs belonging to different

users regis tered to different accounts and poss ibly on different servers . This is i llus t rated at a
high level in Figure C-3 as UCCDs and UCC-CPs connected to the mycloud.org and

theircloud.org UCSs respectively. This results in several communicat ion paths between

devices, control points, servers , services, and users. These specific message flows are
enumerated in the next section to facilitate easier discussion in the remainder of this

spec ification.

UPnP C loud

Communication

v ia UCS

 — 138 —

© 2014 UPnP Forum. All Rights Reserved.

Figure C-3: — Genera l UCA Configura tion

C.1.6 UCA Specific Communication Pa ths

The UCA defines 8 specific types of communicat ions 7 o f which are il lust rated in Figure C-4.

They are:

1) communicat ions between a user (with a user c redential) and the UCA host server (UCS)

us ing the defined UCA API for account management10 (see sect ion C.5.1), for example,
with a browser over HTTP,

2) communications between a UCC-CP or UCCD (with user A credentials) with their UCA host
server A us ing the UCA protocols ,

3) communicat ions between a UCC-CP or UCCD (with user A credent ials) with another users
connected UCC-CP or UCCD (with user B credent ials) either through the same UCA host
server A or through two different UCA host servers A and B us ing the UCA protocols ,

4) communications between UCC-CPs and UCCDs (with user A credent ials) through their
UCA host server A us ing the UCA protocols ,

5) direct communications between two UCA host servers (A and B) us ing the XMPP protocols,
this k ind of communicat ion between servers is often referred to as " federat ion" ,

6) communications between a user's UCA host server and required UCA add on services,
such as, a PubSub service or a Mult i -User Chat (MUC) conference server,

7) direct communications between a UCC-CP or UCCD (with user A credent ials) and a server

host ing a required UCA add on service, such as publishing or ret rieving PubSub events .

8) direct communicat ions between a UCC-CP or UCCD (with user A credent ials) and a UCC-
CP or UCCD (with user B credentials) for data direct data t ransfer as negot iated through
the UCA protocols (not shown).

10 Note this also includes creation of the user credential.

 — 139 —

© 2014 UPnP Forum. All Rights Reserved.

Figure C-4: — Specific UCA communica tions11

C.1.7 UCA Steps as Ana logies to UDA

The fol lowing sect ion provides a high level overview of the major steps involved in
es tablishing a UCA experience.

Step 1: Registra tion

A user registers their UCC-CPs and UCCDs with a UCA host service. This is analogous to

UDA Address ing. It involves several sub-s teps that are described next .

1a) A potential UCA user finds a UCA service provider or installs a UCA server to connect

their UCCDs and UCC-CPs.

1b) The user c reates a UPnP c loud account (see section C.5.1), for example with a
companion browser.

1c) After c reat ing an account, the user starts a UCA cloud session between their UCC -CP or
UCCD and the UCS (from s tep 1a) us ing the user c redent ials from (s tep 1b).

1d) The UCC-CP or UCCD autonomously creates a persis tent and unique XMPP resource of

general type user@upnpcloudserver/upnp:device :resource+unique_identi fier for
UCCDs or user@upnpcloudserver/upnp:controlpoint:resource+unique_identi fie r for
UCC-CPs.

Step 2: Discovery

A UCCD or UCC-CP issues XMPP <presence> stanzas. This is analogous to UPnP SSDP

messages. It involves several sub-s teps that are described next .

11 Note that in this f igure users “ jeffrey” and “mary” are the same as general users A and B in related descr iptions.

mailto:user@upnpcloudserver.tdl/upnp:device:resource_with_friendly_info_and_unique_identifier
mailto:user@upnpcloudserver.tdl/upnp:controlpoint:resource_with_friendly_info_and_unique_identifier

 — 140 —

© 2014 UPnP Forum. All Rights Reserved.

2a) A UCCD or UCC-CP sets its <presence> stanza with no @type att ribute which is
interpreted as "available" (this is equivalent to an ssdp:alive).

2b) A UCCD or UCC-CP sets its <presence> s tanza @type at t ribute to "unavailable"

(this is equivalent to an ssdp:byebye) or the UCS sends a <presence> s tanza with

@type at t ribute set to "unavailable " on behalf of a disconnected UCCD or UCC-CP.

2c) A UCCD whose <presence> stanza s tatus has no @type att ribute, which is interpreted

as "available", sends a new <presence> stanza with a modified configIdCloud element
(this is equivalent to an ssdp:update).

Step 3 Description

A UCCD provides device type informat ion in i ts name and vers ion informat ion sent in its

presence communicat ion, along with descript ion information that can be exchanged in an

<iq> stanza with a UCC-CP. This is analogous to UPnP Description. It involves several sub -

s teps that are described next .

3a) A UCCD sends a conforming vers ion and hash (configIdCloud) of its descript ion in its

<presence>stanza.

3b) A UCC-CP caches the vers ion and hash and if it does not have a valid descript ion of the
requests it from the UCCD us ing an <iq> s tanza.

3b) The UCCD and UCC-CP complete a fol low-up exchange in which the DDD and SCPDs
are exchanged us ing <iq> s tanzas.

Step 4 Eventing

 A UCCD creates and manages a UCA PubSub collection, i f it has events, and a UCC-CP

subscribes to nodes in that collection .This is analogous to UDA Eventing. It involves

several sub-s teps that are described next .

4a) A UCCD creates a conforming PubSub collection for UCCD events at the PubSub

service assoc iated with its UCA server.

4b) A UCC-CP issues conforming PubSub “subscribe ” and “unsubscribe ” queries to a

spec ific UCCD PubSub node (event).

4c) A UCCD or UCA server issues conforming responses to the UCC -CP acknowledging the
subscription request usually a “subscribed” or “unsubscribed” message.

4d) A UCCD sends any event to the PubSub service when an event occurs us ing the required
XMPP message.

Step 5 Control

A UCC-CP invokes an action on a UCCD by exchanging SOAP messages us ing the XMPP
binding for SOAP. This is analogous to UDA Control. It involves several sub -s teps that are
described next .

5a) A UUC-CP invokes a SOAP based act ion on a UCCD us ing an < iq> s tanza,

5b) The UCCD sends a proper SOAP response or error message to the UCCD using an <iq>

response s tanza.

5c) The response can include elements fi ltered to reflect addit ional negot iated and secured
t ransport for direct UCCD to UCCD or direct UCC-CP to UCCD media or data exchanges
where required or effic ient .

 — 141 —

© 2014 UPnP Forum. All Rights Reserved.

C.2 Terms and Definitions

C.2.1 Acronyms

Table C-1: — Acronyms

Acronym Descript ion

BOSH Bidirec t iona-st reams Over Synchronous HTTP

D2D Device-to-Device

FQDN Fully Qualified Domain Name

MUC Mult i-User Chat

UCA UPnP Cloud Annex

UCBS UPnP Cloud Based Service

UCC UPnP Cloud Capable

UCC-CP UPnP Cloud Capable Control Point

UCCD UPnP Cloud Capable Device

UCCD-M UPnP Cloud Capable Device [Mobile]

UCOS UPnP Cloud Only Service

UCS UPnP Cloud Server

UHOD UPnP Home Only Device

XMPP Extens ible Messaging and Presence Protocol

C.2.2 General Cloud Terms and De finitions

Cloud, in the context of UPnP, is the logical domain, not in the user’s home(s), where their
UCODs, UCCDs and UCC-CPs connect , their UCBSs execute, and their c loud based content
res ides.

Domain is a scoped access to a subset of al l available c loud devices, services and users .

Account is a domain in the cloud consisting of a username and a credential. Also, the account
can contain anc il lary informat ion such as address, telephone number, email informat ion and
poss ibly t ransactional informat ion such as c redit card informat ion. An extended concept of an

account is the combination of devices, services and users registered or interacting with the
account .

User, in the context of UPnP cloud, is a uniquely identifiable participant that interacts with the
UPnP cloud ecosystem. A user can be an account owner or part icipant and can be assoc iated
with mult iple c loud accounts.

Login is an identificat ion process that al lows a spec ific user to access their cloud account by
confirming their username and credential. Login can also refer to the act of s tarting an act ive

session with the c loud account . The login can be automated once init ial login succeeds. Some
minimal behavior equivalent to UPnP Public Role [DP] could be ident ified.

Owner is a user that has management rights over an account (or group) and the devices,
services, and users al lowed access within that account.

Home, in the context of UPnP cloud, is the logical network(s) or LAN(s) where a user’s UHOD
and CPDevs are connected.

UPnP Cloud Capable (UCC) means that the device or control point (CP) is capable of
interact ion with UPnP Cloud Based Services.

Invitat ion is the init iation part of regis tering a device, service, or user to a cloud account or
c loud group.

 — 142 —

© 2014 UPnP Forum. All Rights Reserved.

Invited User is a user from a c loud account that has been invited to have access to devices

and services in a different c loud account. The devices and services access can be granted
with a per-device, per-group, or per-service granularity .

C.2.3 Device and Control Point Terms and De finitions

UPnP Cloud Capable Control Point (UCC-CP) is a control point (CP) that can interact with
UCCDs, UCODs, and UCOSs direc t ly. Note that a UCC-CP is not a UCCD.

UPnP Cloud Capable Device [Mobile] (UCCD-[M]) is a non-virtual UPnP device that can
interact direct ly with other UCCDs and UCODs via the c loud, when in the home it can interact
with legacy devices over a home network. The term UCCD-M can be used to indicated that

the UCCD has mobil ity (cell phone, tablet) that is, it wil l frequently get IP connectivity from
outs ide of the home network as opposed to a UCCD that is a 100 inch Smart TV which can
connect direc tly to the internet but is likely to stay in the same LAN. Note that a UCCD -M is

also a UCCD.

UCOD (UPnP Cloud Only Device) is a UPnP device that res ides only in the c loud, more or

less a virtual device. Note that a UCOD is not a UCCD. UHOD (UPnP Home Only Device) is a
device that only works in a home (LAN) network, that is a “legacy” device [UDA1.0], [UDA1.1],
an example is MediaServer:1. It can be added to a c loud account via a CPDev

.
Invited Device is a device from a cloud account that has received an invitation to be
regis tered to a different c loud account .

C.2.4 Service Terms and De finitions

UPnP Cloud Based Service (UCBS) are UPnP services des igned to support the UPnP cloud
ecosystem. This is a broader category than a UCOD and UCOS and encompasses all cloud

related components .

UPnP Cloud Only Service (UCOS) is a service that can reside only in the c loud and might

only be compat ible with UHODs via a CPDev.

Cloud Service is a service originating from a c loud account that is not part of a physical

Device.

Service Provider (SP) is a c loud based entity that provides c loud accounts or UCOS(s)

poss ibly inc luding content.

Service Provider Cloud Service (SPCS) is a UCOS originat ing from a Service Provider

available to a c loud account .

Invited Cloud Service is a cloud service from a c loud account or service provider (SP) that

has received an invitat ion to be regis tered to a different c loud account .

Published Service is a service originating from a device from a home network advert ised to a

c loud account .

C.2.5 Groups

Cloud Group is a default set of UPnP devices connected to a cloud account, often init ial ly

from the same LAN. This group can contain UHODs, UCODs, UCOSs, UCC Ds and UCC-CPs.
A device can belong to more than 1 c loud group.

 — 143 —

© 2014 UPnP Forum. All Rights Reserved.

Cloud Only Group is a default set of UPnP devices connected to a c loud account. This group

can contain UCODs, UCOSs, UCCDs and UCC-CPs. A device can belong to more than 1
c loud only group.

Custom Cloud Group is a configured and managed set of UCCDs, UCODs, UHODs, UCC -CPs
and users for the purpose of managing interaction with and regis t ration to other cloud
accounts and providing l imited subsets of device, service, and user interact ions.

Home Only Group is a default set of UPnP devices connected to a c loud account. This group
can contain only UHODs.

Invited Group is a cloud, custom, or home group that has received an invitation to register to
a different c loud group.

C.3 References

[DP] - UPnP Device Protect ion:1 Servi ce. Available at ht tp: //upnp.org/specs/gw/UPnP-gw-
DeviceProtect ion-v1-Service.pdf

[RFC-6120] - Extens ible Messaging and Presence Protocol XMPP: Core. Available at
ht tp: / /tools.ietf.org/html/rfc6120

[RFC-6121] - Extens ible Messaging and Presence Protocol XMPP: Ins tance Messaging and
Presence. Available at ht tp:/ /tools .iet f.org/html/rfc6121

[RFC-6122] - Extens ible Messaging and Presence Protocol XMPP: Address Format. Available
at ht tp: / / tools. ietf.org/html/rfc6122

[RFC-6455] – The WebSocket Protocol. Available at ht tp: //tools.ietf.org/html/rfc6455

[XEP-0030] - Service Discovery , XMPP Standards Foundat ion, 1999 -2014. Available at

ht tp: / /xmpp.org/extensions/xep-0030.html

[XEP-0060] - Publish-Subscribe, XMPP Standards Foundat ion, 1999-2014. Available at

ht tp: / /xmpp.org/extensions/xep-0060.html

[XEP-0072] - SOAP over XMPP, XMPP Standards Foundat ion, 1999 -2014. Available at

ht tp: / /xmpp.org/extensions/xep-0072.html

[XEP-0084] - User Avatar, XMPP Standards Foundat ion, 1999 -2014. Available at

ht tp: / /xmpp.org/extensions/xep-0084.html

[XEP-0124] - BiDirec t ional-streams Over Synchronous HTTP, 1999-2014. Available at

 ht tp: / /xmpp.org/extensions/xep-0124.html

[XEP-0133] - Service Administ rat ion, XMPP Standards Foundation, 1999-2014. Available at

ht tp: / /xmpp.org/extensions/xep-0133.html

[XEP-0138] - Stream Compress ion, XMPP Standards Foundat ion, 1999 -2014, Available at

ht tp: / /xmpp.org/extensions/xep-0138.html

[XEP-0206] - XMPP over BOSH, XMPP Standards Foundat ion, 1999 -2014, Available at

ht tp: / /xmpp.org/extensions/xep-0206.html

[XEP-0248] - Collec t ion Nodes, XMPP Standards Foundat ion, 1999 -2014. Available at

ht tp: / /xmpp.org/extensions/xep-0248.html

http://upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf
http://upnp.org/specs/gw/UPnP-gw-DeviceProtection-v1-Service.pdf
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6122
http://tools.ietf.org/html/rfc6455
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0072.html
http://xmpp.org/extensions/xep-0084.html
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0133.html
http://xmpp.org/extensions/xep-0138.html
http://xmpp.org/extensions/xep-0206.html
http://xmpp.org/extensions/xep-0248.html

 — 144 —

© 2014 UPnP Forum. All Rights Reserved.

[XEP-0332] - HTTP over XMPP, XMPP Standards Foundat ion, 1999 -2014, Available at

ht tp: / /xmpp.org/extensions/xep-0332.html

C.4 General XMPP Features

This section provides an overview of basic XMPP. The ful l XMPP spec ifications and
descript ions can be found at ht tp: / /xmpp.org.

C.4.1 XMPP Jabber IDs or JIDs

An XMPP Jabber (historical) ID or JID is composed of three parts the localpart (analog to

user name), the domainpart (analog to server name) and the resourcepart (in the UPnP

case, a device or control point name). Together they form a full JID or the "Cloud" address

of a UCCD or UCC-CP. In XMPP communication can occur between different levels of
address ing: server to server, c l ient to server, and c l ient to c l ient.

When UCA server to server communication occurs it is typically sent as an XMPP

domainpart to domainpart and, in the case, of this spec ification, wil l appear as

mycloud.org to theircloud.org. This type of communicat ion is generally out of scope for

the UCA.

When UCA client (UCCD or UCC-CP) to server communication occurs it is typically12 sent as
an XMPP localpart@domainpart /resourcepart to a localpart@domainpart .

However, in many cases, espec ial ly presence, UCA client communicat ion " to" and "from" is

added by the Server or UCS.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:MediaServer:4:uuid:abcd-1234
<presence/>

UCS:mycloud.org (to available resource …abcd -wxyz)
<presence

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:abcd-wxyz"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:abcd-1234"/>

Note that in this example the user or localpart is jeffrey.

Communicat ion between a UCCD (UCC-CP) and its server is somewhat analogous to
communication between a device (control point) and its local network .

When UCA c lient to cl ient communication occurs it wil l be between full JIDs as

localpart@domainpart /resourcepart to a localpart@domainpart /resourcepart

but relayed through the c l ient 's (UCCD or UCC-CP) server firs t .

 UCCDs and UCC-CPs belonging to user A on Server A and connect ing to user A's other
UCCDs or UCC-CPs wil l send UCA communication us ing a Client A1 to Server A to Client
A1 model.

 UCCDs and UCC-CPs belonging to user A1 on Server A and connecting to us er A2 on
server A UCCDs or UCC-CPs wil l send UCA communication us ing a Client A1 to Server A
to Client A2 model.

 UCCDs and UCC-CPs belonging to user A1 on Server A and connecting to user B1 on
server B UCCDs or UCC-CPs wil l send UCA communication us ing a Client A1 to Server A
to Server B to Client B model.

12 Spec ific cases in this annex will appear as jeffrey@myc loud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950 t o jeffrey@mycloud.org or s imilar.

http://xmpp.org/extensions/xep-0332.html
http://xmpp.org/

 — 145 —

© 2014 UPnP Forum. All Rights Reserved.

Note that not all cl ient to c lient communication is expected to go through the servers ; high
bandwidth t ransact ions will be negotiated through XMPP communication and handled in more
effic ient ways (see s ect ion C.9).

C.4.1.1 XMPP stanzas

There are three stanza types defined for XMPP: <iq>, <presence>, and <message>. In

general, <presence> is broadcast between a XMPP c lient to an XMPP server for addit ional

caching or dist ribution. A response is not expected (although the server may generate
additional s tanzas). An <iq> stanza always results in a response although it may be an error

response. Typically this stanza is also cl ient to server, or server to server. A <message>

stanza is typically sent cl ient to c lient and usually does not require a response, but one can

be defined if necessary.

C.4.1.2 <iq> stanzas

XMPP <iq> stanzas have the following defined @type att ribute allowed values: "get", "set",

"result", and "error". They are primari ly intended for request/ response interactions. An

<iq> stanza can contain only one pay load and (for errors) an error child, that is errors might

contain error plus original pay load (see [RFC-6121] , section 8.2.3).

C.4.1.3 <presence> stanzas

XMPP <presence> stanzas have the fol lowing defined @type att ribute al lowed values

which are related to UCA: "unavailable" and no @type at t ribute present, which is

interpreted as "available" . They are used primarily as an online ("available"), off-line

("unavailable") switch which is sent to all subscribers 13 connected ent it ies or in the UPnP
case UCCDs and UCC-CPs.

C.4.1.4 <message> stanzas

XMPP <message> stanzas have the following defined @type att ribute allowed values:

"normal", "chat", "groupchat" , "headline" , and "error". The <message> stanza is the

primary push method in XMPP.

Embedding of other XML namespace elements in stanza pay loads is supported, thus UPnP

wil l define its own pay loads as needed.

C.5 Creating a Device or Control Point Resource

C.5.1 Finding a UCS

Before a UCC-CP or UCCD can be connected us ing UCA, a UCS must be discovered and a
user account c reated. UPnP describes the fol lowing methods for discovering UCA connect ive
services.

Known public ly accessable UCS, UPnP Forum provides l inks to UCSs that have passed UCA

UCS certi ficat ion and that are publicly accessible. This list is maintained at hyperl ink

"ht tp://cloud.upnp.org/ucs/ver/x.x" where x.x indicates the UCA server vers ion the UCS is
cert i fied to. Valid vers ions for this spec ificat ion are "1.0" .

It is expected that versions above 1.0 will be released. These wil l be enumerated at the
URI ht tp: / /cloud.upnp.org/ucs/ as hyperl inks of the form "x .x", for example:

1.0

1.1

2.0

13 A subscr iber UCCD or UCC-CP is either a resource of the same user account or an ex ternal UCCD or UCC-

CP subscribed to another user's UCCD or UCC-CP presence.

http://cloud.upnp.org/ucs/ver/x.x
http://cloud.upnp.org/ucs/ver

 — 146 —

© 2014 UPnP Forum. All Rights Reserved.

URIs at the next level " http://cloud.upnp.org/ucs/ver" would contain hyperl inks to the

UCSs access ible14 for each vers ion, for example:

l ink ht tp: //c loud.upnp.org/ucs/ver/1.0 contains 2 hyperl inks

 ht tp: //mycloud.org

 ht tp: //theircloud.org

l ink ht tp: //c loud.upnp.org/ucs/ver/1.1 contains 2 hyperl inks

 ht tp: / /mycloud.org

l ink ht tp: //c loud.upnp.org/ucs/ver/2.0 contains 1 hyperl ink

 ht tp: / /theirc loud.org

Vendor defined. One or more UCSs are hardcoded into the UCC-CP or UCCD. Upon init ial
startup the user is provided an interface to create an account . After init ial account c reation
and login the UCC-CP or UCCD may connect automat ically.

Add on services, UPnP Forum may define DCPs that al low a locally discoverable
infras truc ture device to advert ise a service that provides discovery of a UCS.

C.5.2 Account Creation

In general, it is expected that most UCCDs and UCC-CPs wil l have some form of UI
support ing account regist rat ion; however this could also be done through a web interface to
the support ing UCS us ing BOSH [XEP-0124] .

[XEP-0133] describes best pract ices for server to server and se rver to component account
management. For bas ic account setup, update, delet ion, and exchange the following user

form variables (var) are defined:

 accountjid,

 password,

 password-verify

 email ,

 given_name,

 surname

It is highly recommended that any account c reat ion-management API, at a minimum, provision
for the input , s torage, and protect ion of the above informat ion.

C.5.3 Authentication

For each UCCD or UCC-CP that a user will connect to their c loud account, they will have to
login to a server support ing the UCA server profi le specified here. When initial login occurs,
the UCCD or UCC-CP uses the bare JID or localpart@domainpart (for this example

jeffrey@mycloud.org) and completes the preconditions (s t ream establishment, security

negot iation (TLS, SASL) described in [RFC-6120], also known as XMPP-CORE. This process

is i l lus t rated in Figure C-5.

Note that this section is a composite of XMPP spec ifications [RFC-6120], [RFC-6121] , [RFC-

6122] .

Figure C-5: — XMPP Authentica tion Negotia tion

 +---------------------+

 | open TCP connection |

 +---------------------+

 |

 v

14 Note that UPnP Forum does not guarantee t he availability of UCS servers.

http://cloud.upnp.org/ucs/ver
http://cloud.upnp.org/ucs/ver/1.0
http://mycloud.org/
http://theircloud.org/
http://cloud.upnp.org/ucs/ver/1.1
http://mycloud.org/
http://cloud.upnp.org/ucs/ver/2.0
http://theircloud.org/
mailto:bob@upnpcloud.org

 — 147 —

© 2014 UPnP Forum. All Rights Reserved.

 +---------------+

 | send initial |<-------------------------+

 | stream header | ^

 +---------------+ |

 | |

 v |

 +------------------+ |

 | receive response | |

 | stream header | |

 +------------------+ |

 | |

 v |

 +----------------+ |

 | receive stream | |

 +------------------>| features | |

 ^ {OPTIONAL} +----------------+ |

 | | |

 | v |

 | +<-----------------+ |

 | | |

 | {empty?} ----> {all voluntary?} ----> {some mandatory?} |

 | | no | no | |

 | | yes | yes | yes |

 | | v v |

 | | +---------------+ +----------------+ |

 | | | MAY negotiate | | MUST negotiate | |

 | | | any or none | | one feature | |

 | | +---------------+ +----------------+ |

 | v | | |

 | +---------+ v | |

 | | DONE |<----- {negotiate?} | |

 | +---------+ no | | |

 | yes | | |

 | v v |

 | +--------->+<---------+ |

 | | |

 | v |

 +<-------------------------- {restart mandatory?} ------------>+

 no yes

The example protocol flows i llust rated here, s tart at the XMPP SASL s tream negotiation

phase, after the init ial TCP/TLS connect ion has been negot iated (again see [RFC-6120] for
details). The first UPnP entity to connect to jeffrey@mycloud.org is a UCCD, spec ifically

a MediaServer:4 with UDN uuid:e70e9d0e-d9eb-4748-b163-636a323e7950. Since the

UCS has been determined to support UCA a -priori (see sect ion C.5.1) it is known that the
UCS can successfully bind a UCCD or UCC-CP and support required add-on UCA services,

such as, a UPnP profiled PubSub . This can be verified us ing [XEP-0030] and will be

described later in this spec ificat ion.

Note the orange highlighted tex t indicates pre-SASL TLS secured exchanges.

C:jeffrey@mycloud.org (C Raw Client prior to UCCD or UCC-CP binding)

<?xml version="1.0"?>

<stream:stream

 to="mycloud.org"

 version="1.0"

 xml:lang="en"

 xmlns="jabber:client"

 xmlns:stream="http://etherx.jabber.org/streams">

UCS:mycloud.org (UCS= UPnP Cloud Server)

<?xml version="1.0"?>

<stream:stream

 from="mycloud.org"

 to=”jeffrey@myloud.org"

 id="++TR84Sm6A3hnt3Q065SnAbbk3Y="

 version="1.0"

 — 148 —

© 2014 UPnP Forum. All Rights Reserved.

 xml:lang="en"

 xmlns="jabber:client"

 xmlns:stream="http://etherx.jabber.org/streams">

 <stream:features>

 <mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">

 <mechanism>DIGEST-MD5</mechanism>

 <mechanism>CRAM-MD5</mechanism>

 </mechanisms>

 <auth xmlns="http://jabber.org/features/iq-auth"/>

 <register xmlns="http://jabber.org/features/iq-register"/>

 </stream:features>

C:jeffrey@mycloud.org

<auth

 mechanism="DIGEST-MD5"

 xmlns="urn:ietf:params:xml:ns:xmpp-sasl"/>

UCS:mycloud.org

<challenge xmlns="urn:ietf:params:xml:ns:xmpp-sasl">

cmVhbG09IndpbnhtcHAiLG5vbmNlPSJoelVVekNNTnhDc1oyYUV0TEJIQys0UERDb2FaeEREN2FUcm

ttbnpvIixxb3A9ImF1dGgiLGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNz

</challenge>

C:jeffrey@mycloud.org

<response

 xmlns="urn:ietf:params:xml:ns:xmpp-sasl">

dXNlcm5hbWU9InRlc3QiLHJlYWxtPSJ3aW54bXBwIixub25jZT0iaHpVVXpDTU54Q3NaMmFFdExCSE

MrNFBEQ29hWnhERDdhVHJrbW56byIsY25vbmNlPSJjNTA2ZWZkYmFkOTlmYzkwODBhYmRjNmIyMGVj

ZGQ4NiIsbmM9MDAwMDAwMDEscW9wPWF1dGgsZGlnZXN0LXVyaT0ieG1wcC93aW54bXBwIixjaGFyc2

V0PXV0Zi04LHJlc3BvbnNlPWYxYjgzZjcwMmJlOThjZmFjOGY2ZTQ1NTA3M2IxM2I3

</response>

UCS:mycloud.org

<success xmlns="urn:ietf:params:xml:ns:xmpp-sasl">

cnNwYXV0aD1hZDM1NGFlNzU2YmJkNTMyYjMzMGNmMjMyOThlOTg5Mw==

</success>

See [RFC-6120] sect ion 6.4.5 describing the c l ient server behaviour regarding SASL fai lure.
Communicat ion is now secure and a second secured XMPP stream or <stream:stream> is

now s tarted.

Note that there are actually two new streams s tarted, one c lient to server and one server to C
thus the new <xml> tag and a new stream id generated and sent by the Server. Green
highlighted text indicates post SASL secured exchange. Sect ion C.12 describes some details

on how to c lose a XMPP sess ion.

C:jeffrey@mycloud.org

<stream:stream

 to="mycloud.org"

 version="1.0"

 xml:lang="en"

 xmlns="jabber:client"

 xmlns:stream="http://etherx.jabber.org/streams">

UCS:mycloud.org

<stream:stream

 from="mycloud.org"

 to="jeffrey@mycloud.org"

 id="gPybzaOzBmaADgxKXu9UClbprp0="

 version="1.0"

 xml:lang="en"

 xmlns="jabber:client">

 xmlns:stream="http://etherx.jabber.org/streams">

 — 149 —

© 2014 UPnP Forum. All Rights Reserved.

UCS:mycloud.org

 <stream:features>

 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"/>

 <session xmlns="urn:ietf:params:xml:ns:xmpp-session"/>

 </stream:features>

Note that s t ream errors are unrecoverable, see [RFC-6120] sect ion 4.9.1.

C.5.4 Binding Devices and Control Points as a Resource

Once the secure st ream has been negot iated for the UCCD or UCC-CP with the UPnP cloud

server (UCS) it wil l send an XMPP <bind> not ification as indicated in the example above

where:

If the binding resource is a UCCD it shall bind with a resourcepart as the ordered

concatenation of the value of the <deviceType> and the value of the <UDN> separated

by a ":" either

resourcepart = urn:schemas-upnp-
org:device:deviceType:ver:uuid:device-UUID

or

resourcepart = urn:domain-name:device:deviceType:ver:uuid:device-UUID

 If the binding resource is a UCC-CP it shall bind with a resourcepart as either:

o the ordered concatenat ion of the value of urn:schemas-upnp-org:cloud-1-

0 :ControlPoint :ver : and either the value of control point <ID> as defined in
DeviceProtect ion Service [DP] if DeviceProtection Service is implemented , that is ,

resourcepart = urn:schemas-upnp-org:cloud-1-0:ControlPoint:ver:<ID>

or

o a UUID value meet ing the same requirements as the device-UUID that is ,

resourcepart = urn:schemas-upnp-org:cloud-1-0:ControlPoint:ver:uuid

For UCA 1.0, the value of the control point vers ion ver is "1" .

Cont inuing the example from above, upon receiving the bind notificat ion, the UCCD
"MediaServer:4" wil l now bind as:

jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950

by sending an <iq> bind request as fol lows:

C:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 to="mycloud.org"

 from="jeffrey@mycloud.org"

 type="set"

 id="yhc13a95"

 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"/>

 <resource>

 urn:schemas-upnp-org:device-1-1:MediaServer:4:

 uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
 </resource>

 </bind>

</iq>

 — 150 —

© 2014 UPnP Forum. All Rights Reserved.

Note, that the value of the iq@id at t ribute is determined by the endpoint (usually a UCS) 15.

A UCS shall accept a conforming request as a new resource with the response:

UCS:mycloud.org

<iq

 to="jeffrey@mycloud.org

 from="mycloud.org"

 type="result"

 id="yhc13a95"

 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind"/>

 <jid>jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950</jid>
 </bind>

</iq>

Error messages received prior to resource binding shall conform to standard XMPP messages
as defined in [RFC-6120] and are not cons idered a UCA error.

Note that a properly implemented UCCD or UCC-CP should not c reate a resource uniqueness
conflict as described in section 7.7.2.2 [RFC-6120], that is uniqueness is guaranteed between

all UCCD and UCC-CP resources. A UCS should not attempt to change the name of a
requested resource, i f it does, the UCCD or UCC-CP request ing the resource bind shall
disconnect the s t ream and t ry to reconnect according to standard XMPP procedures. A UCCD

or UCC-CP shall not accept an XMPP bind that does not conform to its advertised as
described above. .

Upon a successful bind, the MediaServer:4 UCCD is now connected with its own globally

unique full JID . This is the UCCD c loud address. Note, a UCCD is al lowed to have mult iple

c loud addresses.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="yhc95a13"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:MediaServer:4:

 uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 to="jeffrey@mycloud.org"

 type="set"

 <query xmlns="jabber:iq:roster">

 <item jid="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 name="jeffrey MediaServer 4 on cell"/>

 </query>

</iq>

UCS:mycloud.org
<iq

 id="yhc95a13"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 from="mycloud.org"

 type="result">

 <query xmlns="jabber:iq:roster" ver="ver1">

 <item jid="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 name="jeffrey MediaServer 4 on cell"/>

 </query>

</iq>

15 id values in the examples are not randomized or sequenced, as is common practice, for illustration purposes

only .

mailto:bob@upnpcloud.org

 — 151 —

© 2014 UPnP Forum. All Rights Reserved.

C.5.4.1 Limitations on stanza redirection.

In some cases, XMPP allows for the redirec tion of stanzas to an alter nat ive "available"

resource (see [RFC-6120] section 10.5.4) when a full JID matching the "to" att ribute is

not "available". For example, a message of type 4 intended for jeffrey's MediaRender

(which is "unavailable") could be redirected to jeffey 's MediaServer (which is "available"). For
UCA communications this is prohibited as fol lows:

UCCDs and UCC-CPs shall ignore any received s tanza that does not have a "from" att ribute

with a value compliant to a UCA resource as defined above with the fol lowing except ions:

 The stanza is a response to a UCCD or UCC-CP request to the UCS or affil iated service
(such as PubSub). Note that the UCCD or UCC-CP should check the stanza @id att ribute
to confirm.

 The s tanza is a not ification from the UCS or affiliated service.

 The stanza is a message spec ifically identified in this specificat ion indicat ing the allowed
override of the prohibit ion.

A UCS should refrain from redirec ting valid UCA messages sent to an "unavailable" UCA
resource to an "available" UCA resource and instead send appropriate error messages as
described in [RFC-6120] .

Note that UCCDs and UCC-CPs are allowed to be combined with other applicat ions that share
a common XMPP interface, such as "chat". However, non -UCA stanzas should, instead be
sent to the bare JID and resource priority used for any additional routing. Figure C-6

i llust rates these two scenarios. In case 1, a MediaServer sends a U CA stanza to an
"unavailable" MediaRender. Instead of delivering the stanza to the "available" MediaServer or

UCC-CP the appropriate error is returned. In case 2, a non -UCA stanza addressed to the
bare JID is sent and delivered to the "available" resource with the highest priority, in this

case Jeffrey 's UCC-CP; in other terms, UCCDs and UCC-CPs should ignore stanzas of

type="chat" unless a chat interface is provided.

C.5.4.2 Handling resource priori ty

The use of priority in UCCDs and UCC-CPs is al lowed in UCA, however its behavior is not

guaranteed s ince XMPP allows a server to override requested priority as described below.

From [RFC-6121] sect ion 4.7.2.3
The c l ient 's server MAY override the priority value provided by the c l ie nt (e.g.

in order to impose a message handling rule of delivering a message intended for the
account 's bare JID to al l of the account 's available resources). If the server does so
it MUST communicate the modified priority value when it echoes the c lient 's presence back to

itself and sends the presence not ification to the user's contacts (because this modified priority
value is typically the default value of zero communicating the modified priority value can be
done by not inc luding the <priority /> child element).

However, i t is suggested that UCS recognize the fol lowing recommended priorit ies
for UCCDs and UCC-CPs:

UCCDs with no addit ional XMPP features: priority range of [-100 to -33] .
UCCDs with addit ional XMPP features: priority range of [1 to 66] .
UCC-CPs with no addit ional XMPP features: priority range of [-66 to -1] .

UCC-CPS with addit ional XMPP feature: priority range of [33 to 100] .

 — 152 —

© 2014 UPnP Forum. All Rights Reserved.

Figure C-6: — Stanza routing for applications w ith UCA and other XMPP functiona l i ty.

C.5.5 Embedded Devices

UCA does not support embedded devices as described in 2. All UCCDs that advert ise
embedded devices in their UDA DDD shall, for each embedded device (sub -element

<deviceType of DDD element <deviceList>), connect and bind a separate full JID on

its c loud interface using that deviceType and the UDN of the related embedded device (see

 — 153 —

© 2014 UPnP Forum. All Rights Reserved.

Figure C-7). Each embedded device advertised on the UCA interface shall have the <root>

element and <specVersion> element added so that i t is a conforming DDD.

 — 154 —

© 2014 UPnP Forum. All Rights Reserved.

Figure C-7: — UDA to UCA Mapping of embedded devices

C.6 Presence and Discovery

C.6.1 Presence (Ana log to NOTIFY w ith ssdp:a l ive)

A UCCD shall announce its availabili ty by sending an XMPP <presence> s tanza with no

@type at t ribute which is interpreted as "available", and with the <uc> element (see [RFC-

6121] sect ion 4.7.3 Extended Content) advert iz ing the current UCCD configurat ion. This is the
analog of a device NOTIFY with ssdp:alive.

The template for the UCCD <presence> s tanza is :

<presence>

 <uc xmlns="urn:schemas-upnp-org:cloud-1-0">

 <configIdCloud hash="sha-256">vendor calculated value as described below

 </configIdCloud>

 </uc>
</presence>

<presence>

Required. Shall be implemented according to [RFC-6120]. Case sensitive.

<uc >

Required. Type is <XML>. Single valued. Shall have “urn:schemas-upnp-
org:cloud-1-0” as the value for the xmlns attr ibute; th is references the UPnP
Cloud Schema (descr ibed below). Case sensit ive. Shall have one o f the fo llowing
values.

 <configIdCloud>

Requi red. Type is <XML>. Single Valued. Case sens it ive. Value shall be a

Base64 encoding o f the SHA-256 hash (see usage in [DP]) c alculated over
the UCCD advertised DDD concatenated with all the UCCD advertised
SCPDs (if present) in the order they appear in the UCA exposed DDD,
concatenated with a Base64 encoding o f each icon binary in the order they

 — 155 —

© 2014 UPnP Forum. All Rights Reserved.

appear in the UCA exposed DDD iconList e lement (if present). That is
SHA-256(<DDD xml><SCPD-1 xml> . . . <SCPD-N xml>Base64-icon1binary . . .
Base64-iconNbinary).

Note, th is calcu lation is for se lf-consistency between device versions and
is not intended fo r ver ifying so ftware versions. However, no additional
characters shall be inc luded between the concatenated DDDs, SCPDs, and
Base64 encoded icon binar ies, that is, the hash is calculated over a single
c haracter str ing.

@hash
Required. xsd:string. Case sensit ive. The fo llowing values are defined:

"sha-256" indicates that the calcu lated hash o f the device
description is c alculated using the SHA-256 algor ithm [Ref].

Note that this template, or any other template in the UCA, does not prohibit the use of any
additional, valid XML components , espec ial ly, those defined by the XMPP Standards
Foundation (XSF), as long as they do not direc tly contradict the values defined in the UCA

and are properly identified by valid XML namespaces. However, do not expect UCCDs and
UCC-CPs to unders tand XMPP messages embedded in UCA spec ific elements.

Cont inuing the example from above the MediaServer:4 UCCD would send a <presence>

s tanza as fol lows:

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<presence>

 <uc

 xmlns="urn:schemas-upnp-org:cloud-1-0">

 <configIdCloud hash="sha-256">

 jNwTQLAos+iQRmkykrNHk6YDvqxcCSP6dF8FZ1VhXBA=

 </configIdCloud>

 </uc>

</presence>

A UCCD announcing initial presence wil l also need to configure their icon metadata/data

and event PubSub as described later in this Annex.

A UCC-CP shall announce its presence (essent ial ly for discovering UCCDs) by sending a

<presence> stanza with no @type at t ribute, which is interpreted as "available" , as

described in the template below:

<presence/>

<presence>

Required. Shall be implemented according to [RFC-6120]. Case sensitive.

A UCS shall broadcast the received UCCD or UCC-CP <presence> stanza to all subscribed

UCCDs and UCC-CPs connected to the users account and add the @to and @from

at t ributes as indicated below.

From [RFC-6121] sect ion 4.2.2
The user's server (US) MUST also broadcast init ial presence from the user's newly

"available" resource to all of the user's "available" resources , including the resource that

generated the presence notification in the first place (i.e. , an entity is implicit ly subscribed to

its own presence).

The template for the outgoing UCS <presence> s tanza for a UCCD is :

 — 156 —

© 2014 UPnP Forum. All Rights Reserved.

<presence

 from="localpart@domainpart/resourcepart of UCCD sending presence

 conforming to section C.5.4"

 to="localpart@domainpart/resourcepart of UCCD or UCC-CP subscribed

 to presense conforming to section C.5.4">

 <uc xmlns="urn:schemas-upnp-org:cloud-1-0">

 <configIdCloud hash="sha-256">vendor calculated value as described below

 </configIdCloud>

 </uc>

</presence>

and for a UCC-CP is :

<presence

 from="localpart@domainpart/resourcepart of UCC-CP sending presence

 conforming to section C.5.4"

 to="localpart@domainpart/resourcepart of UCCD or UCC-CP subscribed

 to presense conforming to section C.5.4">

</presence>

Note that the @from and @to att ributes are added by the UCS to the outgoing < presence>

s tanzas as fol lows:

@from

Required. Shall be implemented according to [RFC-6120], that is, on ly when

multiple resources are implemented. Shall have a value o f the full JID o f the
UCCD or UCC-CP announcing presence. Case sensitive (fo r resource part only).

@to
Required. Shall be implemented according to [RFC-6120]. Shall have a value o f the

JID o f the subscribed UCCD or UCC-CP. Case sensitive (fo r resource part on ly).

Cont inuing the previous example, and assuming for now the MediaServer:4 UCCD is the

only UCCD or UCC-CP current ly defined for the jeffrey account , the server would send the

s ingle <presence> s tanza below:

UCS:mycloud.org

<presence

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"
 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950">
 <uc xmlns="urn:schemas-upnp-org:cloud-1-0">

 <configIdCloud hash="sha-256">

 jNwTQLAos+iQRmkykrNHk6YDvqxcCSP6dF8FZ1VhXBA=

 </configIdCloud>

 </uc>

</presence>

A second UCCD is now added to jeffrey@mycloud.org account . A MediaRender:3

UCCD with an embedded, second MediaRenderer :3 device. On the local network s ide it is

advert ised with a configId value of 3. On the cloud interface it will be advert ised as two

separate devices. Assuming the two devices have already executed a proper resource bind

as described in sect ion C.5.4, the fol lowing presence exchange wil l occur.

MediaRenderer:3 instance 1 will send its presence. The presence will be broadcast to all

"available" resources on jeffrey's mycloud.org account. In this case, to UCCD

MediaServer :4 and UCCD MediaRenderer :3 ins tance one.

Note that the configIdCloud element value wil l be calculated on the DDD, SCPDs, and icon

binaries of the individual advert ised UCCD instance and wil l be different for the t wo resulting
MediaRenderer :3 devices (as shown in the two presence examples below).

 — 157 —

© 2014 UPnP Forum. All Rights Reserved.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaRenderer:3:uuid:0ee79d0e-e8f5-80ca-4123-225886a58850 (UDA root
device or instance 1)

<presence

 <uc xmlns="urn:schemas-upnp-org:cloud-1-0">

 <configIdCloud hash="sha-256">

 VgjhrqT2VWH0OXHap/rZNkiJc/hQbztgL/EsSaGttng=

 </configIdCloud>

 </uc>

</presence>

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaRenderer:3:uuid:88509d0e-e8f5-80ca-4123-225886a50ee7 (UDA
embedded device local side or instance 2)

<presence>

 <uc xmlns="urn:schemas-upnp-org:cloud-1-0">

 <configIdCloud hash="sha-256">

 NXVQEoeOcbQt4NKwPyMDT26ml0VMAjP8IEgM5aHu7iA=

 </configIdCloud>

 </uc>

</presence>

A UCC-CP is now connected and its presence is sent to the UCS as:

UCC-CP:jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-

0:ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8

<presence/>

and subsequently sent to each subscribed UCCD and UCC-CP with the appropriate

@to and @from at t ributes added.

The cloud discovery (analog to NOTIFY) behavior for UCCDs and UCC -CPs can be

summarized as:

 UCCDs and UCC-CPs bind a resource as described in sect ion C.5.4 of this spec ification.

 UCCDs, after successfully binding a conforming resource, announce their presence

with a <presence> s tanza with no @type att ribute, which is interpreted as "available",
and whose body conforms to s ect ion C.6.1 of this spec ification applying to UCCDs.

 UCC-CPs, after successfully binding a conforming resource, announce their presence

with a <presence> s tanza with no @type att ribute, which is interpreted as "available",
and whose body conforms to sect ion C.6.1 of this spec ification applying to UCC-CPs.

The c loud discovery behavior (analog to mult icast of the NOTIFY) of an XMPP cloud server
support ing the UPnP protocol capabili ty can be summarized as:

 A UCS broadcast any <presence> stanza with no @type att ribute, which is interpreted

as "available", received from any UCCD or UCC-CP resource to all connected and

"available" UPnP UCCD and UCC-CP resources with the <presence> s tanza body
unaltered.

 A UCS broadcast the last presence with @type att ribute value of "unavailable"

received from any UCCD or UCC-CP resource to al l connected and "available" UPnP

UCCDs and UCC-CPs with the <presence> s tanza body intact .

The individual presence exchange be tw een the UCCDs, UCC-CPs, and UCS for an N

connected UPnP scenario is i l lustra ted in

Figure C-8.

 — 158 —

© 2014 UPnP Forum. All Rights Reserved.

Figure C-8: — Se lf <presence> stanza flow s

C.6.2 XMPP disco#items (ana log to M-SEARCH for users UCCDs and UCC-CPs)

A UCC-CP shall support sending an <iq> query with @type att ribute value of "get" and a

<query> element with @xmlns att ribute value of

"http://jabber.org/protocol/disco#items"> to its UCS as defined in [XEP-0030]. A

UCC-CP may send this query at any t ime that i t needs to discovery "available" UCCDs. A

UCC-CP shall be able to dis t inguish UCA conforming resources from other resources .

The example sess ion is cont inued below.

UCC-CP:jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-

0:ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8

<iq

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:ControlPoint:1:

 ad93e8f5-634b-4123-80ca-225886a5c0e8"

 to="jeffrey@mycloud.org"

 id="get uccds and ucccps 1"

 type="get">

 <query xmlns="http://jabber.org/protocol/disco#items"/>

</iq>

The UCS responds with the four "available" UCCDs and UCC-CPs already connected. Note
that this is only useful for discovering connected UPnP ent ities for a spec ific user.

 — 159 —

© 2014 UPnP Forum. All Rights Reserved.

UCS:mycloud.org

<iq

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:ControlPoint:1:

 ad93e8f5-634b-4123-80ca-225886a5c0e8"

 from="jeffrey@mycloud.org"

 id="get uccds and ucccps 1"

 type="result">

 <query xmlns="http://jabber.org/protocol/disco#items"/>

 <item jid="jeffrey@upnp.org/urn:schemas-upnp-org:cloud-1-0:

 ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8"/>

 <item jid="jeffrey@upnp.org/urn:schemas-upnp-org:device-1-1:

 MediaRenderer:3:88509d0e-e8f5-80ca-4123-225886a50ee7"/>

 <item jid="jeffrey@upnp.org/urn:schemas-upnp-org:device-1-1:

 MediaRenderer:3:0ee79d0e-e8f5-80ca-4123-225886a58850"/>

 <item jid="jeffrey@upnp.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4e70e9d0e-d9eb-4748-b163-636a323e7950"/>

 </query>

</iq>

A UCS shall support the XMPP Service Discovery protocol as spec ified in [XEP-0030] .

A UCS shall inc lude a <feature var="http://upnp.org/protocol/cloud/v /"> in their

response to an XMPP disco#info query verifying the UCA vers ion supported by the UCS.
For this spec ification the value of v shall be "1.0" .

C.6.3 Presence update (analog to NOTIFY w ith ssdp:update)

If a UCCD is modified in any manner that results in a change in its DDD or any of its SCPDs
or any of its icon binaries (for devices that implement UDA 1.1 or higher this is equivalent to a

change in the configId), then it shall issue a new <presence> stanza with the new
configIdCloud element value. This is analog to an NOTIFY with “ssdp:update”. The

<presence> stanza shall also conform to the template in sect ion C.6.1. A UCCD that

changes only BOOTID(s) on the local interface shall not send an updated presence.

A UCCD updating its presence wil l also need to update its icon metadata /data

and event PubSub as described later in this Annex.

For example purposes, assume the UCCD MediaServer:4 from the previous example

changes its configurat ion. It would send a new < presence> s tanza much l ike the fol lowing:

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<presence

 <uc

 xmlns="urn:schemas-upnp-org:cloud-1-0">

 <configIdCloud hash="sha-256">

 sddlg2s+lp0E9ryWquNklHlnEuBvRQpyNc8sd0rbPpU=

 </configIdCloud>

 </uc>

</presence>

A UCS shall add the @to and @from at t ributes as previous ly indicated.

C.6.4 Presence "unavailable" (Ana log to NOTIFY w ith ssdp:byebye)

At any point, a UCCD or UCC-CP may make itself "unavailable" on its cloud interface(s) by
sending a <presence> stanza with @type att ribute value of "unavailable" to its UCS as

described in the template below:

 — 160 —

© 2014 UPnP Forum. All Rights Reserved.

<presence

 type="unavailable"/>

<presence>

Required. Shall be implemented according to [RFC-6120]. Case sensitive.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"unavailable".

This is the analog of a NOTIFY with ssdp:byebye.

Note that a UCCD or UCC-CP is not required to make itself "unavailable" on its cloud
interface(s) just because it has left one or all of its locally connected interfaces, that is , it is
assumed that the UCCD or UCC-CP wil l often keep itself al ive on its c loud interfaces.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<presence

 type="unavailable"/>

A UCS shall add the @to and @from at t ributes as previous ly indicated.

C.6.5 Service Level Discovery

Current ly UCA does not include a mechanism to provide filtered Discovery, for example,
finding a particular service among "available" UCCDs. This is primari ly because a s ignificant
amount of informat ion is implied by the full JID of the UCCD and the t rade-off of having

additional granularity would compensate for the addit ional UCS t raffic. Instead, it is highly
recommended that a UCC-CP cache the config IdCloud value of each UCCD along with the

devices DDD, SCPDs, and icons (if advert ised). If, upon subsequent received presence, the
configIdCloud value has changed the UCC-CP should check to see if services have been

updated and re-cache as needed. Also, i f vendor defined UCCDs are encountered; UCC -CPs
should attempt to learn the services provided by these UCCDs and associate them with future
presence of s imilar UCCDs.

Chat tiness – pings! It is recommended to use XMPP ping sparingly ; a ping rate of 30
minutes is recommended.

C.6.6 IQ:Query for DDD and SCPD Exchange (analog of HTTP GET for DDD and SCPD)
C.6.6.1 DDD and SCPD "ge t"

A UCC-CP shall ret rieve UCCD DDDs and SCPDS us ing the <iq> stanza with the @type

att ribute value of "get" as described in the following template. This is the analog of using

HTTP GET to exchange DDDs and SCPDs in the UDA.

<iq

 id="vendor defined value"

 to="localpart@domainpart/resourcepart of UCCD conforming to section C.5.4"

 from="localpart@domainpart/resourcepart of UCC-CP conforming to section

 C.5.4"

 type="get">

 <query xmlns="urn:schemas-upnp-org:cloud-1-0"

 type="description"

 name="value of UDN"/>

</iq>

<iq>

 — 161 —

© 2014 UPnP Forum. All Rights Reserved.

Required. Shall be implemented according to [RFC-6120]. Case sensitive.

@id

Required. Shall be implemented according to [RFC-6120] . Case sensitive.
@from

Required. Shall be implemented according to [RFC-6120]. Shall have a value o f the

full JID o f the UCC-CP requesting a UCCDs' DDD and SCPDs descr iption. Case
sensitive.

@to
Required. Shall be implemented according to [RFC-6120]. Shall have a value o f the

full JID o f the UCCD for which a UCC-CP is requesting a DDD and SCPDs
description. Case sensitive.

@type

Required. Type is string. Shall have a value o f "get".
<query>

Required. Type is <XML>. Shall have “urn:schemas-upnp-org:cloud-1-0” as the
value for the xmlns attr ibute; this references the UPnP C loud Schema (descr ibed
in sec tion C.11). Case sensitive.

@type

Required. Type is xsd:string. Shall have a value o f " description".

@name
Required. Type is xsd:str ing. Shall have a value conditioned on the @type

attr ibute value where the value o f name shall be the value o f the UDN of

the target (to) UCCD.

Note that s ince only one UDA device is "available" in a UCCD there is no need to include any

hierarchy in the DDD/SCPD <iq> request s tanza.

C.6.6.2 DDD and SCPD "result" or "e rror"

A UCCD receiving a valid UCC-CP request as described in sect ion C.6.6.1 shall return an
<iq> stanza with the @type at t ribute value of "result", assuming no other XMPP related

errors are detected, and inc lude the < query> child element with either an @ type att ribute
value of "described" or "error" and the assoc iated device XML or UCA errorCode as

described in the template below. This is the analog of the HTTP GET response of UDA with
the DDD XML and SCPD XML in the response body.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCCD conforming

 to section C.5.4"

 to="localpart@domainpart/resourcepart of UCC-CP conforming

 to section C.5.4"

 type="result"

 <query xmlns="urn:schemas-upnp-org:cloud-1-0"
 type="described|error"

 name="received value of UDN"/>

 Concatenated DDD XML, SCPDs

 or

 UPnP Cloud error Description

 </query>

</iq>

<iq>

Required. Shall be implemented according to [RFC-6120]. Case sensitive.

@id

Required. Shall be implemented according to [RFC-6120]. Case sensitive.
@from

 — 162 —

© 2014 UPnP Forum. All Rights Reserved.

Required. Shall be implemented according to [RFC-6120]. Shall have a value o f the

full JID o f the UCCD for which a UCC-CP is requesting a DDD and SCPDs
description. Case sensitive.

@to
Required. Shall be implemented according to [RFC-6120]. Shall have a value o f the

full JID o f the UCC-CP requesting a UCCDs' DDD and SCPDs descr iption. Case
sensitive.

@type
Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"result" assuming no XMPP or UCA errors, otherwise shall have a value of

"error" and resu lt ing body according to [RFC-6120] or UCA error as descr ibed
below.

<query>

Required. Type is <XML>. Shall have “urn:schemas-upnp-org:cloud-1-0” as the
value for the xmlns attr ibute; this references the UPnP Cloud Schema (descr ibed
below). Case sensitive.

@type

Required. Type is xsd:str ing. Shall have a value o f "described" o r "error"
ac c ording to description fo r value o f <query> e lement below.

@name
Required. Type is xsd:str ing. Shall have a value identical to @ name attr ibute

value in the <iq> request.

 value o f <query> e lement

Required. Type is XML. Value is dependent on the <iq> request as
described below.

If the received query@type attr ibute is description and the
rece ived query@name attribute value matches with the U CCD

deviceType e lement, then the value o f the query e lement shall
be the device DDD XML (as illustrated in

 — 163 —

© 2014 UPnP Forum. All Rights Reserved.

Figure C-7) fo llowed by all SCPD XML for all services in the order
they appear in the device DDD XML. The response shall not include

the <?xml version="1.0"?> e lement. The response shall not

inc lude a deviceList element. Note that in th is case, the
returned query@type attribute value shall be "described ".

If the received query@type attr ibute is description and the
rece ived query@name attr ibute value does not match with the

UCCD deviceType e lement, then the value o f the query e lement
shall be

<UPnPError xmlns="urn:schemas-upnp-org:control-1-

0">

 <errorCode>900</errorCode>

 <errorDescription>deviceType mismatch

 </errorDescription>

</UPnPError>

Note that in th is case, the returned query@type attribute value
shall be "error". See section C.10 fo r further description.

Note that the XML shall be escaped as described in the UDA.

UCS shall support TLS compression, as well as, bas ic compression of XMPP stanzas using
z l ib as defined in [XEP-0138] .

UCCDs and UCC-CPs are highly recommended to support TLS compress ion, as well as , basic
compress ion of XMPP stanzas using zlib as defined in [XEP-0138]. When BOSH [XEP-0138]

is used, TLS and s tanza compression should not be used and i ns tead HTTP level
compress ion negot iated.

Typically DDD and SCPD XML using the recommended compression will achieve

compress ion efficiencies in the 75 to 90 percent range for XMPP stanzas. It is highly
recommended that the UCCDs, UCC-CPs and UCSs for this vers ion, "1.0", support
a minimum of 64 Kbyte s tanzas.

The control point from the cont inuing example requests the MediaServer :4 DDD.

UCC-CP:jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-

0:ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8

<iq

 id="get-MediaServer-ddd"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:

 ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"
 type="get">

 <query

 xmlns="urn:schemas-upnp-org:cloud-1-0"

 type="description"

 name="uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"/>
</iq>

Note that the <iq> s tanza is relayed through the UCS.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="get-MediaServer-ddd"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:

 ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 — 164 —

© 2014 UPnP Forum. All Rights Reserved.

 type="result">

 <query

 xmlns="urn:schemas-upnp-org:cloud-1-0"

 type="described"

 name="uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"/>
 <root xmlns="urn:schemas-upnp-org:device-1-1" configId="2">

 <specVersion>

 <major>1</major>

 . . .

 </specVersion>

 <device>

 <deviceType>urn:schemas-upnp-org:device-1-1:

 MediaServer:4<deviceType>

 . . .

 <iconList>

 . . .

 </iconList>

 <serviceList>

 . . .

 </serviceList>

 </device>

 </root>

 <scpd

 xlmns="urn:schemas-upnp-org:service-1-0"

 . . .

 configId="2">

 <specVersion>

 <major>4</major>

 . . .

 </specVersion>

 <actionList>

 <action>

 . . .

 </action>

 </actionList>

 </scpd>

 . . .

 <scpd

 xmlns="urn:schemas-upnp-org:service-1-0"

 . . .

 configId="2">

 <specVersion>

 <major>3</major>

 . . .

 </specVersion>

 <actionList>

 <action>

 . . .

 </action>

 </actionList>

 </scpd>

 </query>

</iq>

C.6.6.3 Exchange of Device Icons

A UCS shall support [XEP-0084] .

A UCCD that includes the iconList element in its DDD shall support [XEP-0084] and map

the conforming [XEP-0084] data and metadata elements as defined in Table C-2.

 — 165 —

© 2014 UPnP Forum. All Rights Reserved.

Table C-2: — Mapping of DDD iconList to [XEP-0084]

DDD element XEP-0084 Explanation
<iconList> metadata The icon elements in the iconList and info

elements in the metadata element have a 1:1

mapping.
<icon> info The first icon sub-element in the UCCD

iconList element shall correspond to the

" image/png" icon whose <data> element is

uploaded to the UCS. That is , the first info

element shall have a MIME type of " image/png"
and its Base64 encoded binary shall fit within the
64K stanza s ize limit. The Base64 binary, shall be

uploaded to the UCS as the data element (see

below in this table).
 id@info see [XEP-0084]

<mimetype> type@info Required. Shall indicate the MIME type of the firs t
icon. Shall be indicat ive of MIME type " image/png".

<width> width@info Required. Shall be the same, equivalent integer
value as the height of the firs t icon.

<height> height@info Required. Shall be the same, equivalent integer

value as the width of the firs t icon.
<depth> NA Allowed in the UCA iconList element . Not

al lowed as a metadata sub-element .

<url> url@info Allowed. Shall be the URL provided by the avatar

metadata as described in [XEP-0084] for this icon.

NA data Base64 encoded binary of the firs t icon.

A UCCD shall publish the corresponding icon data element as described in the fol lowing

template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCCD conforming

 to section C.5.4"

 to=" PubSubName of UCS supporting UCA

 (see footnote in section C.6.6.3)"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"

 <publish node="urn:xmpp:avatar:data">

 <item id="vendor SHA-1 Hash as described in XEP-0084">

 <data xmlns="urn:xmpp:avatar:data">

 BASE 64 encoded binary for first icon"

 </data>

 </item>

 </publish>

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to16. Required. See equivalent in previous template fo r <iq>17.

16 For all " to" elements in the UCA, the " to" element is not required if the "PubSub" suppor ts Personal Event ing

Protocol as referenced in [XEP-0084] ; how ever , UCCDs and UCC-CPs mus t be able to recognize this
support on the UCS.

17 Note that for brev ity , prev iously def ined template entries are included by reference. For example, all entr ies
descr ibed as "PubSubName of UCS suppor ting UCA" have the same requirements. New elements or changed
elements will be included in the template.

 — 166 —

© 2014 UPnP Forum. All Rights Reserved.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"set".

<pubsub>

Required. Shall be implemented according to [XEP-0084] and contain a data

e lement c orresponding to the first iconList icon b inary.

A UCCD shall publish the corresponding icon metadata element as described in the

fol lowing template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCCD conforming

 to section C.5.4"

 to=" PubSubName of UCS supporting UCA

 (see footnote in section C.6.6.3)"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub">

 <publish node="urn:xmpp:avatar:metadata">

 <item id="vendor calculated SHA-1 Hash as described

 in XEP-0084 corresponding to first icon binary">

 <metadata xmlns="urn:xmpp:avatar:metadata">

 <info

 id="vendor calculated SHA-1 Hash value as described

 in XEP-0084"

 type="vendor calculated image MIME type value

 as described in XEP-0084"

 width="vendor calculated image width value

 as described in XEP-0084"

 height="vendor calculated image height value

 as described in XEP-0084"

 bytes="vendor calculated image size in bytes value

 as described in XEP-0084"

 url="vendor supplied url for additional icon

 binary retrival

 as described in XEP-0084"/>

 </metadata>

 </item>

 </publish>

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See equivalent in previous template fo r < iq>.

@type
Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"set".

<pubsub>

Required. Shall be implemented according to [XEP-0084] and contain a metadata

e lement and at least one info e lement corresponding to the first iconList icon
e lement.

A UCCD publishes its iconList icon XEP-0084 data and metadata to the UCS as shown in

the fol lowing example.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="pub-main-icon-data"

 to="pubsub.mycloud.org"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 — 167 —

© 2014 UPnP Forum. All Rights Reserved.

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"
 type="set">

 <pubsub>

 <publish node="urn:xmpp:avatar:data">

 <item id="299bc6f8e9ef9066971f111f4b3c50d7b0df729d">

 <data xmlns="urn:xmpp:avatar:data">

 aOIHDsbjfsojjsfHOIHafoj...

 </data>

 </item>

 </publish>

 </pubsub>

</iq>

P-USC:pubsub.mycloud.org (PubSub service affiliated with UCS

mycloud.org)

<iq

 id="pub-main-icon-data"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"
 type="result">

</iq>

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="pub-main-icon-metadata"

 to="pubsub.mycloud.org

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"
 type="set">

 <pubsub>

 <publish node="urn:xmpp:avatar:metadata">

 <item id="299bc6f8e9ef9066971f111f4b3c50d7b0df729d">

 <metadata xmlns="urn:xmpp:avatar:metadata">

 <info id="299bc6f8e9ef9066971f111f4b3c50d7b0df729d"

 type="image/png"

 bytes="12345"

 type="image/png"

 height="48"

 width="48"/>

 </metadata>

 </item>

 </publish>

 </pubsub>

</iq>

P-USC:pubsub.mycloud.org (PubSub service affiliated with UCS

mycloud.org)

<iq

 id="pub-main-icon-data"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"
 type="result"/>

Figure C-9 represents the above described operat ions in a mult i -device scenario.

Figure C-9: — Combined Connect, Announce and Describe Message Flow

 — 168 —

© 2014 UPnP Forum. All Rights Reserved.

Table C-3: — Summary of Requirements for DDD e lements

DDD element R/A/CR/CA/P18 Explanat ion

<?xml>
<root> R see 2.3
 root@configId R
 <specVersion> R
 <major> R
 <minor> R
 <URLBase> P
 <device> R
 <deviceType> R
 <friendlyName> R
 <manufacturer> R

<manufacturerURL>
A19 If inc luded, shall not c reate a

security risk , Should be a
public ly available URL.

<modelDescription>

A

18 R = Required, A = A llow ed, CR = Condit ionally Required (is a required sub-element of an allow ed element),

Condit ionally Allow ed (is an allow ed sub-element of a an optional element) , NA = Not Applicable. P = Prohibited
(is allowed in the UDA but not in the UCA or has been deprecated in the UDA) .

19 The follow ing secur ity cons iderations should be cons idered w hen expos ing the manufac turerURL

and modelURL. A URL exposed direc tly from the UCCD should be secure as descr ibed for
presentation URL, otherw ise, it shall be non- local to the dev ice; for example http://vendor .com/dev ice-
model-a.

 — 169 —

© 2014 UPnP Forum. All Rights Reserved.

 <modelName> R
 <modelURL> A
 <serialNumber> A
 <UDN> R
 <UPC> A
 <iconList> R see C.6.6.3 along with 2.3
 <icon> A
 <mimetype> CR
 <width> CR
 <height> CR
 <depth> CR
 <url> NA Shall be the URL provided by

the avatar metadata as

described in [XEP-0084] for
this icon

 <serviceList> A The order of the at tached
SCPDs shall be the same as

the order of the <service>
elements in the <serviceList>

 <service> CA

<serviceType>

CR

<serviceId>

CR

 <SCPDURL> NA Not used in UCA, shall be
ignored

<controlURL>

NA Not used in UCA, shall be
ignored

 <eventURL> NA Not used in UCA, shall be

ignored
 <deviceList> P Embedded devices are not

al lowed in UCA
 <device> P Embedded devices are not

al lowed in UCA
 <presentationURL> A Allowed. If present , shall not

c reate a security risk ; for
example, i t can be an HTTPS

URL. May be publically

available or reachable via
other XMPP protocols , such
as [XEP-0332] . Shall contain

an HTML document as
described in the 5.Shall be
an absolute URL (note that

this overrides the relat ive
URL as described in UDA
which shall be ignored).

C.7 PubSub (Analog of Eventing)

UCA uses the XMPP Publicat ion-Subscribe (PubSub) service [XEP-0060] as the cloud analog

to UPnP event ing. A PubSub service is s imilar to event subscribe (section 4.1.2) and

unsubscribe (section 4.1.4), however an intermediate entity (the PubSub service running on a

PubSub server, which could be integrated with the UCS) is used to decouple the event

communicat ion component (publish) from the subscription management and event

 — 170 —

© 2014 UPnP Forum. All Rights Reserved.

communicat ion component (subscribe). In general, a PubSub service provides greater

scalability and a more flex ible configurat ion. A brief overview extracted from [XEP-0060] is
provided next describing some bas ic concepts of the XMPP PubSub service, namely nodes

and the related access models. Later, additional requirements related to support ing UCA
PubSub are defined.

XMPP defines two types of publicat ion node , Leaf and Collect ion. These are described in

Table C-4.

Table C-4: — PubSub Node Types

Node Type Description

Leaf
A node that contains published items only. It is NOT a container for other
nodes. This is the most common node type.

Collec t ion
A node that contains nodes and/or other collec tions but no published items.
Collec t ions make it poss ible to represent more sophis ticated relat ionships
among nodes. For details , refer to [XEP-0248] .

XMPP defined nodes can have access models as described in Table C-5. They are described
in order of most open to least open.

Table C-5: — PubSub Node Access Mode ls

Access Model Descript ion

Open

Any entity may subscribe to the node (i.e., without the necess ity for

subscript ion approval) and any entity may ret rieve items from the node (i.e.,
without being subscribed); this SHOULD be the defaul t access model for
generic pubsub services.

Presence
Any ent ity with a subscript ion of type " from" or "both" may subscribe to the
node and ret rieve items from the node; this access model applies mainly to
ins tant messaging systems (see [RFC-6121]).

Roster
Any ent ity in the spec ified roster group(s) may subscribe to the node and
ret rieve items from the node; this access model applies mainly to instant
messaging systems (see [RFC-6121]).

Authorize
The node owner must approve all subscript ion requests, and only

subscribers may ret rieve items from the node.

Whitel ist

An ent ity may subscribe or ret rieve items only if on a whitelis t managed by
the node owner. The node owner MUST automatically be on the whitel ist. In

order to add entit ies to the whitel ist, the node owner SHOULD use the
protocol specified in the "Manage Affi liated Ent ities " sect ion of [XEP-0060],
spec ifically by set ting the affi l iation to "member".

The access model is assigned by the node owner during its configuration. Support for the

"owner" and "none" affi liations are required by [XEP-0060]. Support for al l other affi liat ions
(as profiled in Table C-6) is recommended. For each non-required affil iat ion supported by an
implementation, it should return a service discovery feature of "name -affiliation" where "name"

is the name of the affi liation, such as "member", "outcast", or "published. Particular kinds of
PubSub services may enforce addit ional requirements (e.g. , requiring support for a given non -

required affi liat ion or for al l affil iat ions). UCA defines some additional general principles for
PubSub affi l iat ions as described in C.7.6.

http://xmpp.org/extensions/xep-0060.html#owner-affiliations

 — 171 —

© 2014 UPnP Forum. All Rights Reserved.

Table C-6: — PubSub Affi l ia tions and the ir Privi leges to "publishing" as de fined by

[XEP-0060] and further restricted by UCA (see footnotes)

Affi l iat ion Subscribe
Retrieve

Items
Publish
Items

Delete

Single
Item

Purge
Node

Configure
Node

Delete
Node

Owner Yes
20

 Yes Yes Yes Yes21 Yes
21

 Yes
21

Publisher Yes Yes Yes Yes22 Yes
22

 No No

Publish-Only No No Yes Yes
22

 No
22

 No No

Member Yes Yes No No No No No

None Yes No No No No No No

Outcast No No No No No No No

The PubSub owner can modify a JIDs affi liat ion and thereby its acce ss as summarized in the

Table C-7.

Table C-7: — PubSub Affi l ia tions and the ir Privi leges to "subscribers"

Outcast None Member Publisher Owner

Outcast --
Owner removes

ban

Owner adds
ent ity to

member l is t

Owner adds
ent ity to

publisher l is t

Owner adds
ent ity to

owner l is t

None
Owner

bans ent ity
--

Owner adds
ent ity to

member l is t

Owner adds
ent ity to

publisher l is t

Owner adds
ent ity to

owner l is t

Member
Owner

bans ent ity

Owner removes
ent ity from member

l is t

--
Owner adds

ent ity to

publisher l is t

Owner adds
ent ity to

owner l is t

Publisher
Owner

bans ent ity

Owner removes
ent ity from

publisher l is t

n/a --
Owner adds

ent ity to

owner l is t

Owner n/a Owner res igns n/a n/a --

To identify the PubSub JID, UCC-CPs and UCCDs shall be capable of sending a

disco#item and disco#info <iq> stanza to the UCS JID and returned item JIDs as

described for a UCC-CP in C.6.2 and identifying the PubSub service and PubSub service

features as described in [XEP-0030] and [XEP-0060]. Some addit ional requirements are
related to disco# are also described in C.7.2. Note that a typical PubSub JID is of the form

20 A ny UCCD or UCC-CP belonging to a specif ic user account shall be cons idered as an "ow ner" for subscription

and retrieval purposes to any PubSub node c reated by any UCCD or UCC-CP belonging to the same account.

21 Only t he UCCD c reating a PubSub node shall be considered t he "owner" of t he node for publication, deletion.

22 Note: A service MAY allow any publis her to delet e / purge any it em once it has been published to that node
instead of allowing only t he orig inal publisher to remove it. This behaviour is NOT RECOMMENDED for the publis h-
only affiliation, which SHOULD be allowed t o delete only items t hat t he publish -only entity has published.

The ways in which an entity changes its affiliation with a node are well-defined. Typically, action by an owner is
required to make an affiliation state transition. Affiliation changes and their trigger ing actions are spec ified in
Table C-7.

 — 172 —

© 2014 UPnP Forum. All Rights Reserved.

"pubsub." concatenated with the UCS JID, for example the PubSub service for "myc loud.org"

would be "pubsub.mycloud.org".

For UCCDs that have evented state variables, c loud event ing proceeds along one of two
poss ible phases depending on whether the related UCCD PubSub hierarchy needs to be

created, updated, or jus t published to. First the, UCCD needs to det ermine if the PubSub

hierarchy ex is ts for i tself, and if i t does, whether i t conforms to the lates t configuration.

If the hierarchy does not exist and the UCCD has evented s tate variables, then the UCCD
creates it by :

 Creat ing a UCCD collection node at the UCCDs PubSub service,

 Creat ing a configIdCloud leaf node of the device collection node and adding to it an

item of value "CONFIGURING" ,

 Creat ing service collection node(s) for each service in the UCCD and ty ing them to the

device collection node ,

 Creat ing evented state variable leaf node(s) for each evented s tate variable and tying

them to their service collection node,

 Changing the configIdCloud leaf node to the current vers ion.

 Once configured, the UCCD begins publishing events to the PubSub collection .

Figure C-10 i l lus trates the related PubSub configurat ion flow.

If the hierarchy does ex ist for the evented state variables, but the UCCD confirms the
configIDCloud leaf node is not up to date then it ceases any further event pu blicat ion and

updates the configurat ion by:

 changing the configIdCloud leaf node to "CONFIGURING",

 t ravers ing each branch of the device PubSub hierarchy and purging all evented state

variable item(s) of any evented state variable that the UCCD does not su pport in its new

configurat ion,

 deleting any evented state variable leaf node no longer in a spec ific service and adding

any new evented s tate variable(s) as a new leaf node(s),

 deleting any service collection node(s) (and firs t their event node (s) and event item(s)

no-longer supported by the UCCD,

 c reat ing any new service collection node (s) as described previous ly ,

 changing the configIdCloud node to the current vers ion.

 resuming publicat ion of events to the PubSub .

Else

 A UCCD cont inues to publish event s to the PubSub .

For UCC-CPs there are essent ially 4 phases involved:

 A UCC-CP determines the expected PubSub s t ructure of a UCCD from the UCCDs full

JID and DDD/SCPD descript ion.

 If the examined UCCD has evented state variables then a UCC -CP can subscribe to the

PubSub service events (collection node(s) [XEP-0248]) i t needs to monitor.

 — 173 —

© 2014 UPnP Forum. All Rights Reserved.

 A UCC-CP monitors the PubSub service for events indicat ing a change (modificat ion in

the configIDCloud leaf node) to the device descript ion and re-subscribes if necessary.

 A UCC-CP unsubscribe to events (collection node(s) or leaf node (s)) it no longer
needs to monitor.

Figure C-10: — PubSub Hie ra rchy Event Structure Crea tion

C.7.1 Crea ting the UCCD PubSub structure

A UCCD with evented state variables , before creating a PubSub collection for events,

shall first ident ify the PubSub service availabili ty by sending an <iq> stanza request to its

UCS as described in the fol lowing template . The UCCD should verify that the PubSub

supports the UPnP configuration by verify ing the inclusion of the "ownerUPnP" affil iat ion in

the access model opt ions returned in an init ial pubsub/protocol/#owner response.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCCD conforming to

 section C.5.4"

 to="PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="get"

 <query xmlns="http://jabber.org/protocol/disco#info"/>

</iq>

<iq>, iq@id, iq@from. Required. See equivalent in previous template fo r < iq>.

@to

 — 174 —

© 2014 UPnP Forum. All Rights Reserved.

Required. Shall be implemented according to [RFC-6120]. Shall have a value o f the

name of the PubSub service supporting UCA ("PubSubName") as determined by

previous disco#items and disco#info queries. Case sensitive.
@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"get".

<query>

Required. Shall have “http://jabber.org/protocol/disco#info” as the

value fo r the xmlns attribute (see schema in [XEP-0030]). Case sensitive.

A UCS shall respond to the above <iq> stanza request with the included xml <query> child

element indicat ing support for the PubSub service conforming to [XEP-0060], that is it

inc ludes

 <identity category="pubsub" type="service"/>

 <feature var="http://jabber.org/protocol/pubsub"/>

 <feature var="http://upnp.org/protocol/cloud/1.0"/>

The UCCD MediaServer :4 verifies the PubSub infras tructure is supported.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="check-for-pubsub"

 to="pubsub.mycloud.org"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid: e70e9d0e-d9eb-4748-b163-636a323e7950"
 type="get">

 <query

 xmlns="http://jabber.org/protocol/disco#info"/>

</iq>

P-USC:pubsub.mycloud.org (PubSub service affiliated with UCS
mycloud.org)

<iq

 id="check-for-pubsub"

 from="pubsub.mycloud.org"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid: e70e9d0e-d9eb-4748-b163-636a323e7950"
 type="result">

 <query

 xmlns="http://jabber.org/protocol/disco#info"/>

 . . .

 <identity category="pubsub" type="service"/>

 <feature var="http://jabber.org/protocol/pubsub"/>

 <feature var="http://upnp.org/protocol/cloud/1.0"/>

 . . .

 </query>

</iq>

C.7.1.1 Veri fying an existing UCCD PubSub Hie rarchy

Upon confirmation of the PubSub service existence that supports UCA, as indicated above, a

UCCD with evented s tate variables shall confirm there is an exis ting, current PubSub

collection hierarchy for the specific UCCD by sending an < iq> s tanza as described in the

fol lowing template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCCD conforming to

 section C.5.4"

 — 175 —

© 2014 UPnP Forum. All Rights Reserved.

 to="PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="get"

 <query xmlns="http://jabber.org/protocol/disco#info"

 node="resourcepart"/>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See equivalent in previous template fo r < iq>.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of
"get".

<query>

Required. Shall have “http/::jabber.org/protocol/disco#info” as the
value for the xmlns attr ibute (see schema in [XEP-0060] section 5.3 Discover Node
Information). Case sensitive.

@node

Required. Type is xsd:str ing. Shall have a value the same as resourcepart of
the requesting UCCD.

A UCCD shall inspect the UCS response <iq> stanza for the inc lusion of a

<query:identity> sub-element associated with the resourcepart described above where

the @catergory att ribute shall have a value of "pubsub" and the @node at t ribute shall

have a value of "collection". If the described matches are confirmed, the UCCD shall next

confirm the current configurati on (configIDCloud leaf node), otherwise, it shall c reate a

collection node hierarchy as described in section C.7.1.

Upon confirmation of the exis ting UCCD level collection node, a UCCD shall confirm that

the configured PubSub device collection node hierarchy configIdCloud item value

matches the current UCCD configIdCloud element value by sending an <iq> stanza as

described in the fol lowing template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCCD conforming to

 section C.5.4"

 to="PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="get">

 <query xmlns="http://jabber.org/protocol/disco#items"

 node="value of UCCD PubSub configIdCloud node item"/>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See equivalent in previous template fo r < iq>.

@type
Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"get".
<query>

Required. Shall be implemented according to [XEP-0030].

Shall have “http://jabber.org/protocol/disco/items” as the value for the
xmlns attr ibute. Case sensit ive.

Shall contain a @node attr ibute whose value is the expected, configured UCCD

leve l collection node. Case sensitive.

The returned item (s) list should contain the configIdCloud leaf node and a

collection node for each service ident ified in the UCCD DDD.

C.7.2 Crea ting a UCCD PubSub col lection

The generalized s teps for c reat ing a UCCD PuBSub hierarchy, when required, are:

 — 176 —

© 2014 UPnP Forum. All Rights Reserved.

A UCCD shall c reate a PubSub node of type collection with UCCD resourcepart as the

node name as described in this section.

A UCCD shall c reate a configIdCloud PubSub node of type leaf with UCCD

resourcepart"/configIdCloud" as the node name and bind it to the UCCD

collection node as described in this sect ion.

For each service in the UCCD, the UCCD shall c reate a service node of type collection

with resourcepart"/servicename" as the node name and bind it to it to the UCCD

collection node as described in this sect ion.

For each evented state variable in a UCCD service, the device shall c reate a state variable
event node of type leaf resourcepart"/servicename/statevariable" as the node

name and bind it to the corresponding service collection node as described in this section.

After c reating all the nodes as described above the UCCD shall publish an item value of

resourcepart"/configId" leaf node with a value equivalent to the UCCD DDD

config IdCloud element value as described in this sect ion.

The UCCD shall c reate the resourcepart, resourcepart"/service", and

resourcepart"/service/statevariable" and resourcepart"/configIdCloud"

nodes by sending an <iq> s tanza as described in the fol lowing template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCCD conforming to

 section C.5.4"

 to="PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="set"

 <pubsub xmlns="http://jabber.org/protocol/pubsub/"/>

 <create node="value of UCCD node name"/>

 <configure>

 <x xmlns="jabber:x:data" type="submit">

 <field var="FORM_TYPE" type="hidden">

 <value>http://jabber.org/protocol/pubsub#node_config</value>

 </field>

 <field var="pubsub#node_type">

 <value>

 collection if device or service level node

 leaf if a configIdCloud or state variable event node

 </value>

 </field>

 <field var="pubsub#collection">

 <value>

 name of device collection node if this is a service node

 name of device collection node if this is a configIdCloud node

 name of service node if this is a evented state variable node

 </value>

 </field>

 <field var="pubsub#access_model">

 <value> access model supported by UCS conforming to UCA</value>

 </field>

 <field var="pubsub#max_items">

 <value>

 1 if the node is the configIdCloud leaf node,

 # if services in the device if the node is a device collection

 node,

 # if evented state variables in the service if the node is a

 service collection node,

 1 or more if the node is an evented state variable leaf node.

 The recommended value is 1 with a maximum of 10. DCPs with

 specific recommendations for UCA should define a value and

 corresponding reason for a value above 1.

 </value>

 — 177 —

© 2014 UPnP Forum. All Rights Reserved.

 </field var="pubsub#other">

 </value>other</value>

 </field>

 </x>

 </configure>

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See equivalent in previous template fo r <iq>.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"set".

 <pubsub>

Required. Shall have “http://jabber.org/protocol/pubsub” as the value
fo r the xmlns attribute (see schema in [XEP-0060]). Case sensitive.

<c reate>

Required. Shall be implemented according to [XEP-0060].

Shall have a value o f e ither resourcepart o f the UCCD JID, or the
concatenation o f UCCD JID resourcepart with "/" with the value of

serviceType e lement or the concatenation o f UCCD JID resourcepart

with "/" with the value o f the serviceType element with "/" with the
value of the stateVariable element dependent on whether the UCCD is

creating the UCCD deviceType collection node, the UCCD serviceType
collection node o r the UCCD stateVariable leaf node respective ly.

Note that if the UCCD is creating a stateVariable leaf node that the
combination o f the serviceType value and the stateVariable value shall
on ly be for state var iables that are valid for the service indicated and

shall on ly be created for those state var iables that have an @sendEvents
attr ibute value o f "yes".

Note that the PubSub nodes should be created in the order in which they
appear in the re lated device description response in section C.6.6.2.

<c onfigure>

Required. Shall have “http://jabber.org/protocol/pubsub” as the
value fo r the xmlns attribute (see schema in [XEP-0060] section XML
Sc hemas). Case sensitive.

<fie ld>

Required. Shall be implemented according to [XEP-0060].

Shall c ontain the x, pubsub#node_type, pubsub#collection,

pubsub#access_model, and pubsub#max_items as described in
the template above.

A UCS shall support the "whitelist" access model.

In the example below, a UCCD creates its initial event ing PubSub s t ruc ture.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950

<iq

 id="9b6LhcCnH2AtIjtXixM7"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"
 to="pubsub.mycloud.org"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub">

 <create node="urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"/>
 <configure>

 — 178 —

© 2014 UPnP Forum. All Rights Reserved.

 <x xmlns="jabber:x:data" type="submit">

 <field var="FORM_TYPE" type="hidden">

 <value>http://jabber.org/protocol/pubsub#node_config</value>

 </field>

 <field var="pubsub#node_type">

 <value>collection</value>

 </field>

 </x>

 </configure>

 </pubsub>

</iq>

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="ztIyU6LYtLPUu9yQslq2"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 to="PubSubName of UCS"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <create node="urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-
 636a323e7950/ContentDirectory:4"/>

 <configure>

 <x xmlns="jabber:x:data" type="submit">

 <field var="FORM_TYPE" type="hidden">

 <value>http://jabber.org/protocol/pubsub#node_config</value>

 </field>

 <field var="pubsub#node_type">

 <value>collection</value>

 </field>

 </x>

 </configure>

 </pubsub>

</iq>

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="I6nvuRN1OAc2XAdYiPeT"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 to="pubsub.mycloud.org"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <create node="urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-
 636a323e7950/ContentDirectory:4/SystemUpdateID"/>

 <configure>

 <x xmlns="jabber:x:data" type="submit">

 <field var="FORM_TYPE" type="hidden">

 <value>http://jabber.org/protocol/pubsub#node_config</value>

 </field>

 <field var="pubsub#node_type">

 <value>leaf</value>

 </field>

 </x>

 </configure>

 </pubsub>

</iq>

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="bUv256CyvkxyKKyVCQ2h"

 — 179 —

© 2014 UPnP Forum. All Rights Reserved.

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 to="pubsub.mycloud.org"

 type="set"

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <create node="urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-
 636a323e7950/ContentDirectory:4/LastChange"/>

 <configure>

 <x xmlns="jabber:x:data" type="submit">

 <field var="FORM_TYPE" type="hidden">

 <value>http://jabber.org/protocol/pubsub#node_config</value>

 </field>

 <field var="pubsub#node_type">

 <value>leaf</value>

 </field>

 </x>

 </configure>

 </pubsub>

</iq>

Once all collection nodes (device and service) and all leaf nodes (configIdCloud and

evented state variables) have been created, the UCCD shall update the configIdCloud leaf

node with the current value of configIdCloud (see C.6.1) of the configuring UCCD as

described in the fol lowing template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCCD conforming to

 section C.5.4"

 to="PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <publish node="name of configIdCloud leaf node as described above">

 <item>

 <e:configIdCloud xmlns:e="urn:schemas-upnp-org:cloud-1-0">

 value of configIdCloud

 </e:configIdCloud>

 </item>

 </publish>

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See equivalent in previous template fo r < iq>.

@type

Required. Shall be implemented according to [RFC-6120] . Shall have a value of

"set".

<pubsub>

Required. Shall be implemented according to [XEP-0060] fo r a pubsub e lement.
Shall have “http://jabber.org/protocol/pubsub” as the value for the xmlns
attr ibute (see schema in [XEP-0060]). Case sensit ive.

Shall contain a publish e lement whose @node attr ibute is the configIdCloud

node.

Shall contain an item e lement contain ing e:configIdCloud e lement according to

urn:schemas-upnp-org:cloud-1-0.

The UCCD shall monitor the response to the node c reation stanzas to make sure that each

node is c reated successfully. If a node c reat ion fai ls the UCCD should re-t ry the creat ion.

The UCCD shall not publish a configIdCloud leaf node (other than with a value of

 — 180 —

© 2014 UPnP Forum. All Rights Reserved.

"CONFIGURING") unti l it has confirmed that the complete PubSub event st ructure for the

current UCCD has been configured.

A UCCD shall be parsimonious with any updates to its PubSub collection to avoid

unnecessary stanza t raffic as any node or item deletion wil l result in not ifications to all

subscribed UCC-CPs. Therefore, a UCCD should only remove collection or event node(s)

that are no longer part of the current c onfiguration. For example, a UCCD should not remove
the ContentDirectory service collection node from a MediaServer collection node

s ince it is required for al l MediaServers or a SystemUpdateID s tate variable event node

s ince it is required for al l Content Direc tory services.

PubSub node and item deletion is not described explicitly in the UCA but al l UCCDs and

UCSs shall support node and item deletion as described in [XEP-0060] sections "Delete a

Node" and "Delete and Item from a Node" respect ively ; and shall use the to and from stanza

address ing as described previous ly in this section.

In a newer instance of the MediaServer, support for the LastChange state variable is

dropped. After firs t publishing a "CONFIGURING" s tate to the config IdCloud leaf node, the

UCCD deletes the s tate variable leaf node "LastChange " as fol lows:

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="4bzS1rcVVWtw7koYAhVb"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 to="pubsub.mycloud.org"

 type="set"

 <pubsub xmlns="http://jabber.org/protocol/pubsub/owner"/>

 <delete node="urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-
 636a323e7950/ContentDirectory:4/LastChange"/>

 </pubsub>

</iq>

Once the UCCD event st ructure is updated the UCCD also updates the configIdCloud leaf

node with the new value. Note t hat the UCCD will have already updated its presence with the

new config IDCloud value.

C.7.3 Publishing a UCCD PubSub event

When a UCCD events a state variable, it shall update the corresponding PubSub leaf node

by sending an <iq> s tanza to its UCC PubSub service containing the subscribe element as

described in the fol lowing template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCCD conforming to

 section C.5.4"

 to="PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <publish node="name of event leaf node as described above">

 <item>

 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">

 <e:property>

 <variableName>new value</variableName>

 </e:property>

 <!-- Other variable names and values (if any) go here. -->

 </e:propertyset>

 — 181 —

© 2014 UPnP Forum. All Rights Reserved.

 </item>

 </publish>

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See equivalent in previous template fo r < iq>.

@type

Required. Shall be implemented according to [XEP-0060]. Shall have a value of

"set".

<pubsub>

Required. Shall be implemented according to [XEP-0060] fo r a pubsub e lement.
Shall have “http://jabber.org/protocol/pubsub” as the value for the xmlns
attr ibute (see schema in [XEP-0060]). Case sensit ive.

Shall contain a publish e lement whose @node attr ibute is the name of the event

node.

Shall contain an item e lement contain ing an e:propertyset e lement as

described in section 4.3.2.

In the example below a UCCD (MediaServer) publishes and update to the ContentDirectory
serv ice SystemUpdateID s tate variable.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 id="WEnCONy2g1rJQ9SN0TWN"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"

 to="pubsub.mycloud.org"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <publish node="urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950">

 <item>

 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">

 <e:property>

 <SystemUpdateID>2716658</SystemUpdateID>

 </e:property>

 </e:propertyset>

 </item>

 </publish>

 </pubsub>

</iq>

Upon successful publicat ion of the event, the UCCD shall receive an < iq> stanza identifying

the spec ific unique ID of the published event as described in the fol lowing template.

<iq

 id="vendor defined value"

 to="localpart@domainpart/resourcepart of UCCD conforming to

 section C.5.4"

 from="PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub/"/>

 <publish node="name of event leaf node as described above">

 <item id="unique id of published leaf node event"/>

 </publish>

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See equivalent in previous template fo r < iq>.

@type

 — 182 —

© 2014 UPnP Forum. All Rights Reserved.

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"result".

<pubsub>

Required. Shall be implemented according to [XEP-0060] fo r a pubsub e lement.

Shall have “http://jabber.org/protocol/pubsub” as the value for the xmlns
attr ibute (see schema in [XEP -0060]). Case sensit ive.

Shall contain a publish e lement whose @node attr ibute is the name of the event

node.
Shall contain an item e lement whose @id attr ibute contains a un ique value
identifying the specific publication.

If the publication fai ls then the subscribing UCCD should receive a < iq> stanza with the

proper error code according to [XEP-0060] .

Note that some addit ional cons iderations for special case events may be needed, such as a

ContentDirectory service LastChange event ; in these cases, a specific UCA Annex will be
created to describe the support for the part icular DCP.

Typically the PubSub event leaf node buffer has a depth of 1, therefore it is

recommended that a PubSub retract message not be sent (to save on bandwidth)

unless an event buffer specifically defined to be of length greater than 1 has been
configured.

UCC-CPs subscribed to the event (leaf node) or any corresponding collection node will

receive the event as described in the fol lowing template.

<iq

 id="vendor defined value"

 to="localpart@domainpart/resourcepart of subscribed UCC-CP conforming

 to section C.5.4"

 from="PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <publish node="name of event leaf node as described above">

 <item>

 <e:propertyset xmlns:e="urn:schemas-upnp-org:event-1-0">

 <e:property>

 <variableName>new value</variableName>

 </e:property>

 <!-- Other variable names and values (if any) go here. -->

 </e:propertyset>

 </item>

 </publish>

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See previous templates for <iq> for corresponding
requirements.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"set".

<pubsub>

Required. Shall be implemented according to [XEP-0060] fo r a pubsub e lement.

Shall have “http://jabber.org/protocol/pubsub” as the value for the xmlns
attr ibute (see schema in [XEP-0060]). Case sensit ive.

Shall contain a publish e lement whose @node attr ibute is the name of the event
node.

Shall contain an item e lement contain ing an e:propertyset e lement as

described in section 4.3.2.

 — 183 —

© 2014 UPnP Forum. All Rights Reserved.

C.7.4 Subscribing to a UCCD PubSub col lection

When subscribing to a UCCD, configIdCloud or evented s tate variable leaf node or a

device or service collection node on a UCCD PubSub, a UCC-CP shall send an <iq>

s tanza to the UCCDs PubSub service as described in the fol lowing template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of subscribing UCC-CP conforming

 to section C.5.4"

 to=" PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <subscribe

 node="name of event leaf node

 or device collection node

 or service collection node

 as described above that the UCC-CP is subscribing to"

 jid="full JID of subscribing UCC-CP"/>

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See previous template for <iq> for corresponding
requirements.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"set".

<pubsub>

Required. Shall be implemented according to [XEP-0060] for a "subscribe"
e lement.

Shall have “http://jabber.org/protocol/pubsub” as the value for the xmlns
attr ibute (see schema in [XEP -0060]). Case sensit ive.

Shall c ontain a subscribe node as defined in [XEP-0060].
Shall contain a @jid attr ibute whose value is equivalent to that o f the UCC -CP

subscribing to a pubsub item.

Shall contain a @node attr ibute whose value is equivalent to the leaf node name

of a state var iable, confidIDCloud, icon, or re lated parent event collection

node fo r which the UCC-CP is subscribing.

In the example below, a UCC-CP subscribes to the ContentDirectory service collection

node.

UCC-CP:jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-

0:ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8

<iq

 id="AbaDM3Au4atsk8kXsyHxYbMh"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:

 ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8"

 to="pubsub.mycloud.org"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <subscribe

 node="urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950/

 ContentDirectory:4"

 jid="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:

 ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8"/>

 </pubsub>

</iq>

 — 184 —

© 2014 UPnP Forum. All Rights Reserved.

Upon a successful subscribe the UCC-CP should expect to receive an <iq> s tanza of type

"result" containing the elements as described in the fol lowing template.

<iq

 from="localpart@domainpart/resourcepart of subscribing UCC-CP conforming

 to section C.5.4"

 to=" PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="result">

 <pubsub xmlns="http://jabber.org/protocol/pubsub">

 <subscription

 node="name of event leaf node

 or device collection node

 or service collection node

 as described above that the UCC-CP is subscribing to"

 jid="full JID of subscribing UCC-CP"

 subid="subscription unique identifier generated by PubSub service"

 subscription="subscribed"/>

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See previous template for <iq> for corresponding
requirements.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"result".

<pubsub>
Required. Shall be implemented according to [XEP-0060] for a subscription
e lement.

Shall contain a @jid attr ibute whose value is equivalent to the UCC-CP that has

successfully subscribed to a pubsub item.

Shall contain a @node attr ibute whose value is equivalent to the leaf node name

of the state var iable, configIdCloud, icon, or re lated parent event collection

node fo r which the UCC-CP has a subscription.

Allowed to contain a @subid attr ibute whose value is a unique value descr ib ing
the spec ific subscription (similar to un ique subscription identifier as descr ibed in
sec tion C.7.1.1).

Shall c ontain a @subscription attribute whose value is "subscribed".

Continued from the prev ious example, the UCC-CP receives success from the subscribe to

the ContentDirectory service collection node.

UCC-CP:jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-

0:ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8

<iq

 id="AbaDM3Au4atsk8kXsyHxYbMh"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:

 ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8"

 from="pubsub.mycloud.org"

 type="result">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <subscription

 node="urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950/

 ContentDirectory:4"

 jid="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:

 ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8"

 subid="2deed9ef1d677508ae63e12f3beb9b6006eb69c8"

 subscription="subscribed"/>

 </pubsub>

</iq>

 — 185 —

© 2014 UPnP Forum. All Rights Reserved.

If the subscribe fails then the subscribing UCC-CP should receive a <iq> stanza with the

proper error code according to [XEP-0060] .

All UCC-CP subscriptions shall be of the type full JID , although bare JID subscript ions

are al lowed under XMPP as described below.

From [XEP-0060] Sect ion 6.1.6 Mult iple Subscriptions
When the PubSub service generates event not ifications, it should send only one event

not ification to an ent ity that has multiple subscript ions, rather than one event not ification for
each subscript ion. By "entity" here is meant the JID specified for the subscript ion, whether

bare JID or full JID; however, i f the same bare JID has mult iple subscript ions but those

subscript ions are for different full JIDs (e.g., one subscript ion for user@domain.tld./ foo and

another subscription for user@domain.t ld/bar), the service shall t reat those as separate JIDs

for the purpose of generat ing event not ifications.

C.7.5 Unsubscribing to a UCCD PubSub col lection

When un-subscribing to a UCCD evented s tate variables leaf node or a device or service

collection node on a UCCD c loud interface (PubSub), a UCC-CP shall send an <iq>

stanza to the UCCDs PubSub service containing the unsubscribe element as described in

the fol lowing template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of subscribed UCC-CP conforming

 to section C.5.4"

 to="PubSubName of UCS supporting UCA (see footnote in section C.6.6.3)"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <unsubscribe

 node="name of event leaf node as described above that

 the UCC-CP is unsubscribing from"

 jid="full JID of subscribed UCC-CP"/>

 subid="subscription unique identifier generated by PubSub service"

 </pubsub>

</iq>

<iq>, iq@id, iq@from, iq@to. Required. See previous template for <iq> for corresponding
requirements.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"set".

 <pubsub>

Required. Shall be implemented according to [XEP-0060] for an unsubscribe
e lement.

Shall contain a @jid attr ibute whose value is equivalent to the UCC -CP that is

unsubscribing from pubsub node.

Shall contain a @node attr ibute whose value is equivalent to the leaf node name

of the state var iable, configIdCloud, icon, or re lated parent collection node
fo r wh ich the UCC-CP is unsubscribing.

Allowed to contain a @subid attr ibute whose value is a unique value descr ibing
the spec ific subscription (similar to un ique subscription identifier as descr ibed in
sec tion C.7.1.1).

Continued from the previous example, the UCC-CP unsubscribes to the ContentDirectory

serv ice collection node.

 — 186 —

© 2014 UPnP Forum. All Rights Reserved.

UCC-CP:jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-

0:ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8

<iq

 id="cAdMHPtF2aMZqdrkQV82CK5Z"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:

 ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8"

 from="pubsub.mycloud.org"

 type="set">

 <pubsub xmlns="http://jabber.org/protocol/pubsub"/>

 <unsubscribe

 node="urn:schemas-upnp-org:device-1-1:

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950/

 ContentDirectory:4"

 jid="jeffrey@mycloud.org/urn:schemas-upnp-org:cloud-1-0:

 ControlPoint:1:ad93e8f5-634b-4123-80ca-225886a5c0e8"

 subid="2deed9ef1d677508ae63e12f3beb9b6006eb69c8"/>

 </pubsub>

</iq>

Upon a successful unsubscribe the UCC-CP should expect to receive an <iq> stanza of type

"result" containing an empty body as described in the fol lowing template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of subscribed UCC-CP conforming

 to section C.5.4"

 to="PubSubName of subscribed UCCD UCS PubSub service"

 type="result"/>

<iq>, iq@id, iq@from, iq@to. Required. See previous template for <iq> for corresponding
requirements.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"result".

From [XEP-0060] Sect ion 6.1.6 Mult iple Subscriptions

When the PubSub service generates event not ifications, it should send only one event

not ification to an ent ity that has multiple subscript ions, rather than one event not ification for
each subscript ion. By "entity" here is meant the JID specified for the subscript ion, whether

bare JID or full JID; however, i f the same bare JID has mult iple subscript ions but those

subscript ions are for different full JIDs (e.g., one subscript ion for user@domain.tld./ foo and

another subscription for user@domain.t ld/bar), the service shall t reat those as separate JIDs

for the purpose of generat ing event not ifications.

If the unsubscribe fai ls then the unsubscribing UCC-CP should receive a <iq> stanza with the

proper error code according to [XEP-0060] .

C.7.6 Permissions mode l

Princ ipals of UCA PubSub permission models .

 Personal Event ing Protocol is the preferred c onfigurat ion.

 PubSub leaf and collection node ownership should be restricted to the full JID to

prevent c ross post ing of events between UCCDs and UCC-CPs or non-UCA JIDs.

 The access model for UCCD event collection and leaf nodes should be of type

"roster".

 All UCCDs and UCC-CPs should be in the base <group /> named "UPnPCloud".

 — 187 —

© 2014 UPnP Forum. All Rights Reserved.

 All UCCDs and UCC-CPs in the "UPnPCloud " roster <group /> should have

affliliations with the event collection and leaf node (s) associated with their

bare JID so that any event subscription can be auto accepted.

C.8 SOAP over XMPP (Analog of Control)

Like UDA, UCA uses SOAP for control and spec ifically extends the SOAP over XMPP as
described in [XEP-0072]23.

A UCCD shall be capable of receiving and responding to an invok ed action us ing SOAP over
XMPP as defined in [XEP-0072] and this spec ification.

A UCC-CP shall be capable of invoking an Action using SOAP over XMPP as defined in [XEP-
0072] and this spec ification.

To verify SOAP support at the XMPP level a UCC-CP can send an <iq> stanza containing an

<query xmlns=http://jabber.org/protocol/disco#info"/> element to a UCCD. If

such a s tanza is received by a UCCD and no error conditions are encountered the UCCD

should inc lude in its response <query> element sub-elements

<identity category="automation " type=”soap”/> and

<feature var="http://jabber.org/protocol/soap "/> element.

An example is shown below in the case where disco#info is used to indicate SOAP support.

UCC-CP:jeffrey@mycloud.org/urn:schemas-upnp-org:ControlPoint:1:ad93e8f5-634b-

4123-80ca-225886a5c0e8

<iq

 from="jeffrey@mycloud.org/ urn:schemas-upnp-org:ControlPoint:1:

 ad93e8f5-634b-4123-80ca-225886a5c0e8"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:MediaServer:4:

 uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"/>

 id="cp-1-do-you-soap"

 type="get">

 <query xmlns="http://jabber.org/protocol/disco#info"/>

</iq>

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 to"jeffrey@mycloud.org/urn:schemas-upnp-org:ControlPoint:1:

 ad93e8f5-634b-4123-80ca-225886a5c0e8"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1

 MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"/>
 id="cp-1-do-you-soap"

 type="result">

 <query xmlns="http://jabber.org/protocol/disco#info"/>

 <identity category="automation" type="soap"/>

 <feature var="http://jabber.org/protocol/soap"/>

 </query>

</iq>

SOAP messages are exchanged using <iq> stanzas where the invoking UCC-CP sends an

<iq> stanza with the iq@type att ribute value of “set” with the service serviceId contained

in the header and the SOAP act ion contained in the body of the <iq> s tanza as fol lows:

23 Note that even though [XEP-0072] is defined for SOA P 1.2 only SOA P 1.1 is required for UCA, for example,

SOA P 1.1 namespace is used as described in section 3:. Control.

http://jabber.org/protocol/disco#info

 — 188 —

© 2014 UPnP Forum. All Rights Reserved.

To control a UCCD, a UCC-CP shall send an <iq> stanza as described in the fol lowing

template.

<iq

 id="vendor defined value"

 from="localpart@domainpart/resourcepart of UCC-CP invoking action

 conforming to section C.5.4"

 to="localpart@domainpart/resourcepart of UCCD where action is invoked

 conforming to section C.5.4"

 type="set">

 <s:Envelope

 xmlns:s="http://schemas.xm lsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <s:Header m ustUnderstand="1">
 <uc xmlns="urn:schemas-upnp-org:cloud-1-0" serviceId="serviceId"/>

 </s:Header>

 <s:Body>
 <u:actionName xmlns:u="urn:schemas-upnp-org:service:serviceType:v">

 <argumentName>in arg value</argumentName>

 <!-- other in args and their value go here, if any -->

 </u:actionName>

 </s:Body>

 </s:Envelope>
</iq>

<iq>, iq@id, iq@from, iq@to. Required. See previous template for <iq> for corresponding
requirements.

@type

Required. Shall be implemented according to [RFC-6120] . Shall have a value of
"set".

<s:envelope>

Required. Type is <XML>. Shall be implemented according to section 3.2 for
invoking an Action.

<s:header>.

Required. Type is <XML>. Shall be implemented as described in section 3.1.1.

@mustUnderstand
 Required. Type is xsd:string. Shall have a value o f "1".

<uc >
 Required. Type is <XML>.

@xmlns. Required. xsd:str ing. Shall have a value of "urn:schemas-upnp-
org:cloud-1-0".

@service Id. Required. xsd:str ing. Shall have a value o f "serviceId"
c o rresponding to the service fo r with the ac tion is invoked.

The UCCD shall inspect the serviceId included in the SOAP header field and attempt to

execute the invoked Action on the matching service. When the Act ion is invoked successfully
or with an Act ion error then the UCCD shall respond with an <iq> stanza whose iq@type

att ribute has a value of "result" and that conforms to one of the fol lowing templates for an

Act ion response or error respect ively .

Act ion successful response template is :
<iq

 id="vendor defined value"

 to="localpart@domainpart/resourcepart of UCC-CP invoking action

 conforming to section C.5.4"

 from="localpart@domainpart/resourcepart of UCCD where action is invoked

 — 189 —

© 2014 UPnP Forum. All Rights Reserved.

 conforming to section C.5.4"

 type="result">

 <s:Envelope
 xmlns:s="http://schemas.xm lsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s :Header mustUnderstand="1">
 <uc xmlns="urn:schemas-upnp-org:cloud-1-0" serviceId="serviceId"/>

 </s :Header>

 <s:Body>
 <u:actionNameResponse
 <argumentName>out arg value</argumentName>

 <!-- other in args and their value go here, if any -->

 </u:actionNameResponse>

 </s:Body>

 </s:Envelope>
</iq>

<iq>, iq@id, iq@from, iq@to. Required. See previous template for <iq> for corresponding
requirements.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"result" if the Action invocation is successful.

<s:envelope>
Required. Type is <XML>. Shall be implemented according to 3.2.2 for Action
returning a success response.

Act ion error response template is :
<iq

 id="vendor defined value"

 to="localpart@domainpart/resourcepart of UCC-CP invoking action

 conforming to section C.5.4"

 from="localpart@domainpart/resourcepart of UCCD where action is invoked

 conforming to section C.5.4"

 type="result">

 <s:Envelope

 xmlns:s="http://schemas.xm lsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s :Header mustUnderstand="1">
 <uc xmlns="urn:schemas-upnp-org:cloud-1-0" serviceId="serviceId"/>

 </s :Header>
 <s:Body>

 <s:Fault>

 <fau l tcode>s:Client</faultcode>
 <fau l tstring>UpnPError</fau ltstring>

 <deta il>
 <UPnPError xmlns:"urn:schemas-upnp-org:control-1-0">

 <errorCode>error_code</errorCode>

 <errorDescription>error_string</errorDescription>

 </UPnPError>

 </deta il>

 </s:Fault>

 </s:Body>

 </s:Envelope>
</iq>

<iq>, iq@id, iq@from, iq@to. Required. See previous t emplate for <iq> for corresponding
requirements.

@type

Required. Shall be implemented according to [RFC-6120]. Shall have a value of

"result" if the Action invocation generates a UDA error c ondition.

 — 190 —

© 2014 UPnP Forum. All Rights Reserved.

<s:envelope>

Requ ired. Shall be implemented according to 3.2.5 return ing an Action error
response.

The fol lowing is an example of Act ion invocat ion with both a success or error response

UCC-CP:jeffrey@mycloud.org/urn:schemas-upnp-org:ControlPoint:1:ad93e8f5-634b-

4123-80ca-225886a5c0e8

<iq

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:ControlPoint:1:

 ad93e8f5-634b-4123-80ca-225886a5c0e8"

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:MediaRenderer:3:
 uuid:88509d0e-e8f5-80ca-4123-225886a50ee7"
 id="cp-1-soap-action-1"

 type="set">

 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <s:Header mustUnderstand="1">

 <uc xmlns="urn:schemas-upnp-org:cloud-1-0"

 serviceId="RenderingControl"/>

 </s:Header>

 <s:Body>

 <u:SetVolume xmlns:u="urn:schemas-upnp-

org:service:RenderingControl:3">

 <DesiredVolume>20</DesiredVolume>

 </u:SetVolume>

 </s:Body>

 </s:Envelope>

</iq>

The UCCD responds with a SOAP act ion or SOAP error response as defined in 3.2

In this case below the Act ion is successful.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:MediaRenderer:3:uuid:

88509d0e-e8f5-80ca-4123-225886a50ee7

<iq

 to="jeffrey@mycloud.org/ urn:schemas-upnp-org:ControlPoint:1:

 ad93e8f5-634b-4123-80ca-225886a5c0e8"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:MediaRenderer:3:
 uuid:88509d0e-e8f5-80ca-4123-225886a50ee7"
 id="cp-1-soap-action-1"

 type="result">

 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <s:Header mustUnderstand="1">

 <uc xmlns="urn:schemas-upnp-org:cloud-1-0"

 serviceId="RenderingControl"/>

 </s:Header>

 <s:Body>

 <u:SetVolume xmlns:u="urn:schemas-upnp-org:

 service:RenderingControl:3">

 <DesiredVolume>20</DesiredVolume>

 </u:SetVolume>

 </s:Body>

 </s:Envelope>

</iq>

In the case below the Action requested was invalid and the UCCD returns an error 401 -

"Act ion Invalid" .

 — 191 —

© 2014 UPnP Forum. All Rights Reserved.

UCCD:jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-

1:MediaServer:4:uuid:e70e9d0e-d9eb-4748-b163-636a323e7950
<iq

 to="jeffrey@mycloud.org/urn:schemas-upnp-org:ControlPoint:1:

 ad93e8f5-634b-4123-80ca-225886a5c0e8"

 from="jeffrey@mycloud.org/urn:schemas-upnp-org:device-1-1:MediaServer:4:

 uuid:e70e9d0e-d9eb-4748-b163-636a323e7950"
 id="cp-1-soap-action-1"

 type="result">

 <s:Envelope

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <s:Header mustUnderstand="1">

 <uc xmlns="urn:schemas-upnp-org:cloud-1-0"

 serviceId="RenderingControl"/>

 </s:Header>

 <s:Body>

 <s:Fault>

 <faultcode>s:Client</faultcode>

 <faultstring>UPnPError</faultstring>

 <detail>

 <UPnPError xmlns="urn:schemas-upnp-org:control-1-0">

 <errorCode>401</errorCode>

 <errorDescription>Invalid Action</errorDescription>

 </UpnPError>

 </detail>

 </s:Fault>

 </s:Body>

 </s:Envelope>

</iq>

Note, the messages are sent through the user’s UCS which is n ot shown in the exchanges.

C.9 Support for Binary (Media) Transport

No specific support for the exchange of binary data is required at this t ime. Any addit ional
t ransport (for example Audio-Video media) is left to the respons ible UPnP Forum Working

Committee or the vendor. It is highly recommended that UPnP Forum Working Committees
publish a UCA Annex to their exis ting DCPs and SCPDs to integrate UCA into the exis ting
spec ifications.

Exchange of Base64 encoded binary within XMPP stanzas as a regular means of
t ransport is highly discouraged, as this wil l l ikely result in significant UCS s lowdown
and overall bad UCA experience for al l UCCD and UCC-CPs.

C.10 UCA errorCodes

The fol lowing errorCodes are similar in st ructure and schema to those in Table 3-3 but are not
part of an Action error and instead are UCA specific errors returned as part of < iq> stanza

response.

ErrorCode errorDescription Description

900 DeviceType mismatch The resource part of the full JID of the "to"
device does not match the DDD of the
device.

 — 192 —

© 2014 UPnP Forum. All Rights Reserved.

C.11 UCA Schemas

See B.6 for urn:upnp-schemas-org:cloud-1-0.xsd.

C.12 Closing a UCA Session

Often a UCCD or UCC-CP will need to completely c lose its connect ion with its UCS. When
doing so it will first issue a <presense> stanza of type "unavailable" and then close the

XMPP sess ion us ing the s team c lose elements as shown below.

Note that this closes both the direc tional st reams: UCCD (or UC C-CP) to UCS and UCS to

UCCD (or UCC-CP).

<presence type="unavailable">

UCCD (or UCC-CP) c loses its s tream to UCS.

UCCD (or UCC-CP)->UCS

</stream:stream>

UCS c loses its s t ream to UCCD (or UCC-CP)

UCS->UCCD (or UCC-CP)

</stream:stream>

Note, that unt il the </st ream:stream> element is received by the UCS the UCS wil l consider

the connect ion open for a l imited period, even if the underly ing TCP connection has been
c losed. When the XMPP clients have been idle or sleeping for a s ignificant amount of t ime (as
determined by the UCS; most likely 30 minutes) or have been disconnected the UCS wil l send

a <presence> s tanza of type "unavailable" on their behalf.

C.13 UCA over BOSH and WebSocket

From [XEP-0124], BOSH "defines a t ransport protocol that emulates the semantics of a long-
l ived, bidirectional TCP connection between two ent it ies (such as a cl ient and a server) by
effic iently using multiple synchronous HTTP request/ response pairs without requiring the use

of frequent polling or chunked responses; thus allowing a browser based UCCD or UCC-CP to
connect with a Webserver based UCS. WebSocket [RFC-6455] offers addit ional advantages
over BOSH as an alternative t ransport and its usage is likely to become more widespread in

the future. Therefore, BOSH and WebSocket support for UCA is defined as fol lows:

A UCS shall support BOSH [XEP-0124] .

A UCCD or UCC-CP which contains a web browser should support BOSH [XEP-0124] .

A UCS, UCCD or UCC-CP may support WebSocket [RFC-6455].

Figure C-11: — BOSH and WebSocke t UCA Stack

UPnP vendor [purple -ital ic]

UPnP Forum [red-ital ic]

UPnP De vic e A rc h ite c ture [g re e n -bo ld]

 — 193 —

© 2014 UPnP Forum. All Rights Reserved.

SSDP equivalent
mapped t o X MPP

pr esence

[blue]

Multic ast e ve nts
e quivalent mappe d to

X MPP “pubsub ”

 [navy -bo ld]

SOAP mapped t o X MPP
SOAP suppor t

 [blue]

GENA e qu ivale nt
mappe d to X MPP

“pubsub”

 [navy -bo ld]

X MPP [re d bo ld unde rline d]

BOSH/WebSocket

TLS/SASL

TCP [black]

I P [black]

 — 194 —

© 2014 UPnP Forum. All Rights Reserved.

Figure C-12: — BOSH and WebSocke t a t UCA component stacks

UPnP as de sc r ibe d

in UCA fo r
De vice and Contro l Po in t

 UPnP as de sc r ibe d

in UCA fo r
De vice and Contro l Po in t

UPnP vendor [purple-italic] UPnP vendor [purple-italic]

UPnP Forum [red-ital ic] UPnP Forum [red-ital ic]

UPnP De vice Architecture

[g re e n -bo ld]

 UPnP De vice Architecture

[g re e n -bo ld]

SSDP, SOAP, GENA
equivalent mapped t o

X MPP X ML St r eam [blue]

X MPP X ML St r eam +

X MPP pubsub

[blue]

 X MPP X ML St r eam +
X MPP pubsub

 [blue]

 SSDP, SOAP, GENA
equivalent mapped t o

X MPP X ML St r eam [blue]

X MPP [re d bo ld
unde rline d]

X MPP [re d bo ld

unde rline d]
 X MPP [re d bo ld

unde rline d]
 X MPP [re d b o ld

unde rline d]

BOSH/WebSocket BOSH/Websocket
TLS/SASL

TLS/SASL

TLS/SASL TLS/SASL

UDP/TCP UDP/TCP UDP/TCP UDP/TCP

I P I P I P I P

UCCD/UCC-CP(A) Server(A) Server(B) UCCD/UCC-CP(B)

UPnP as de sc r ibe d
in UCA fo r

De vice and Contro l Po in t

 UPnP as de sc r ibe d
in UCA fo r

De vic e and Co ntro l
Po in t

UPnP vendor [purple-italic]
 UPnP vendor [purple -

ital ic]

UPnP Forum [red-ital ic] UPnP Forum [red-italic]

UPnP De vice Architecture
[g re e n -bo ld]

 UPnP De vic e

A rchitecture [g re e n -
bo ld]

SSDP, SOAP, GENA
equivalent mapped t o

X MPP X ML St r eam [blue]

X MPP X ML St r eam +

pubsub

 [blue]

X MPP X ML St r eam

[blue]

X MPP [re d bo ld

unde rline d]

X MPP [re d bo ld

unde rline d]

BOSH/WebSocket BOSH/WebSock et

TLS/SASL TLS/SASL Ser ver t o Ser ver

UDP/TCP UDP/TCP Communicat ion

I P I P is int er nal

UCCD Server UCOD
 UCC-CP (UCS) (UCCD in Cloud)

UPnP C loud Communicat ion v ia UCS

ser ver s

UPnP C loud
Communicat ion

v ia UCS

