
UPnP AV Architecture:1
For UPnP™ Version 1.0
Status: Standardized DCP
Date: September 30, 2008
Document Version: 1.1

This Standardized DCP has been adopted as a Standardized DCP by the Steering Committee of the
UPnP™ Forum, pursuant to Section 2.1(c)(ii) of the UPnP™ Forum Membership Agreement. UPnP™
Forum Members have rights and licenses defined by Section 3 of the UPnP™ Forum Membership
Agreement to use and reproduce the Standardized DCP in UPnP™ Compliant Devices. All such use is
subject to all of the provisions of the UPnP™ Forum Membership Agreement.

THE UPNP™ FORUM TAKES NO POSITION AS TO WHETHER ANY INTELLECTUAL
PROPERTY RIGHTS EXIST IN THE STANDARDIZED DCPS. THE STANDARDIZED DCPS ARE
PROVIDED "AS IS" AND "WITH ALL FAULTS". THE UPNP™ FORUM MAKES NO
WARRANTIES, EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
STANDARDIZED DCPS, INCLUDING BUT NOT LIMITED TO ALL IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE, OF
REASONABLE CARE OR WORKMANLIKE EFFORT, OR RESULTS OR OF LACK OF
NEGLIGENCE.

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

UPnP AV Architecture: 1 – Document Version 1.1 2

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Author* Company
John Ritchie Intel Corporation
Thomas Kuehnel Microsoft Corporation
Jeffrey Kang Philips
Wouter van der Beek Philips

*Note: The UPnP Forum in no way guarantees the accuracy or completeness of this author list and
in no way implies any rights for or support from those members listed. This list is not the
specifications’ contributor list that is kept on the UPnP Forum’s website.

UPnP AV Architecture: 1 – Document Version 1.1 3

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Contents

1. OVERVIEW AND SCOPE ..5
1.1. INTRODUCTION...5
1.2. GOALS..5
1.3. NON-GOALS ...5
1.4. NOTATION ..5
1.5. REFERENCES...6

2. ARCHITECTURAL OVERVIEW..6

3. PLAYBACK ARCHITECTURE ...9
3.1. MEDIA SERVER ..10

3.1.1. Content Directory Service ...11
3.1.2. ConnectionManager Service ...11
3.1.3. AVTransport Service ...11

3.2. MEDIARENDERER...11
3.2.1. RenderingControlService ..12
3.2.2. ConnectionManagerService ..12
3.2.3. AVTransport Service ...12

3.3. CONTROL POINT...13
3.3.1. 2-Box model: Control Point with Decoder..16
3.3.2. 2-Box model: Control Point with Content ...17

3.4. TRACKING STREAMS IN THE NETWORK ...17
4. EXAMPLE PLAYBACK SCENARIOS ...18

4.1. 3-BOX MODEL: ISOCHRONOUS-PUSH (IEC61883/IEEE1394) ..18
4.2. 3-BOX MODEL: ASYNCHRONOUS-PULL (E.G. HTTP GET) ...20
4.3. 2-BOX MODEL: CONTROL POINT WITH DECODER USING ISOCHRONOUS-PUSH (E.G. IEEE-1394)...22
4.4. 2-BOX MODEL: CONTROL POINT WITH DECODER USING ASYNCHRONOUS-PULL (E.G. HTTP GET)24

4.4.1. Minimal Implementation..24
4.5. 2-BOX MODEL: CONTROL POINT WITH CONTENT USING ISOCHRONOUS-PUSH (E.G. IEEE-1394) ...25
4.6. 2-BOX MODEL: CONTROL POINT WITH CONTENT USING ASYNCHRONOUS-PULL (E.G. HTTP GET)27
4.7. NO CONNECTIONMANAGER::PREPAREFORCONNECTION() ACTION...28

5. RECORDING ARCHITECTURE...30

List of Figures
Figure 1: Typical UPnP Device Interaction Model ...7

Figure 2: UPnP AV Device Interaction Model ...7

Figure 3 General Device Architecture aka the 3-Box model ..9

Figure 4 General Interaction Diagram of the 3-Box model...15

Figure 5 Control Point with Decoder ..16

Figure 6 Control Point With Content ..17

UPnP AV Architecture: 1 – Document Version 1.1 4

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Figure 7 3-Box Model: Isochronous-Push transfer protocols ...19

Figure 8 3-Box model:Asynchronus-Pull transfer protocol ..21

Figure 9 2-Box model: Control Point with Decoder using Isochronous-Push ...23

Figure 10 2-Box model: Control Point with Decoder using Asynchronous-Pull..24

Figure 11 2-Box model: Minimal Implementation..25

Figure 12 2-Box model: Control Point With Content using Isochronous-Push ..26

Figure 13 2-Box model: Control Point with Content using Asynchronous-Pull...27

Figure 14 3-Box model: no AVTransport::PrepareForConnection() function ..29

UPnP AV Architecture: 1 – Document Version 1.1 5

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

1. Overview and Scope

1.1. Introduction
This document describes the overall UPnP AV Architecture, which forms the foundation for the UPnP AV
Device and Service templates. The AV Architecture defines the general interaction between UPnP Control
Points and UPnP AV devices. It is independent of any particular device type, content format, and transfer
protocol. It supports a variety of devices such as TVs, VCRs, CD/DVD players/jukeboxes, settop boxes,
stereos systems, MP3 players, still-image cameras, camcorders, electronic picture frames (EPFs), and the
PC. The AV Architecture allows devices to support different types of formats for the entertainment content
(such as MPEG2, MPEG4, JPEG, MP3, Windows Media Architecture (WMA), bitmaps (BMP), NTSC,
PAL, ATSC, etc.) and multiple types of transfer protocols (such as IEC-61883/IEEE-1394, HTTP GET,
RTP, HTTP PUT/POST, TCP/IP, etc.). The following sections describe the AV Architecture and how the
various UPnP AV devices and services work together to enable various end-user scenarios.

1.2. Goals
The UPnP AV Architecture was explicitly defined to meet the following goals:

• To support arbitrary transfer protocols and content formats.

• To enable the AV content to flow directly between devices without any intervention from the
Control Point.

• To enable Control Points to remain independent of any particular transfer protocol and content
format. This allows Control Points to transparently support new protocols and formats.

• Scalability, i.e. support of devices with very low resources, especially memory and processing
power as well as full-featured devices.

1.3. Non-Goals
The UPnP AV Architecture does not enable any of the following:

• Two-way Interactive Communication, such as audio and video conferencing, Internet gaming, etc.
• Access Control, Content Protection, and Digital Rights Management
• Synchronized playback to multiple rendering devices

1.4. Notation

Table 1-1: Default Short Names for the AV Specifications

AV Specification Name Short Name
AVTransport AVT
ConnectionManager CM
ContentDirectory CDS
MediaRenderer MR

UPnP AV Architecture: 1 – Document Version 1.1 6

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

AV Specification Name Short Name
MediaServer MS
RenderingControl RCS
ScheduledRecording SRS

1.5. References
This section lists the normative references used in the UPnP AV specifications and includes the tag inside
square brackets that is used for each such reference:

[AVT] – AVTransport:2, UPnP Forum, September 30, 2008.
Available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service-20080930.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-AVTransport-v2-Service.pdf.

[CDS] – ContentDirectory:3, UPnP Forum, September 30, 2008.
Available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v3-Service-20080930.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ContentDirectory-v3-Service.pdf.

 [CM] – ConnectionManager:2, UPnP Forum, September 30, 2008.
Available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service-20080930.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-ConnectionManager-v2-Service.pdf.

 [MR] – MediaRenderer:2, UPnP Forum, September 30, 2008.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaRenderer-v2-Device-20080930.pdf.
Latest version available at: http://www.upnp.org/specs/av /UPnP-av-MediaRenderer-v2-Device.pdf.

 [MS] – MediaServer:3, UPnP Forum, September 30, 2008.
Available at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v3-Device-20080930.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-MediaServer-v3-Device.pdf.

[RCS] – RenderingControl:2, UPnP Forum, September 30, 2008.
Available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service-20080930.pdf.
Latest version available at: http://www.upnp.org/specs/av/UPnP-av-RenderingControl-v2-Service.pdf.

2. Architectural Overview
In most (non-AV) UPnP scenarios, a Control Point controls the operation of one or more UPnP devices in
order to accomplish the desired behavior. Although the Control Point is managing multiple devices, all
interactions occur in isolation between the Control Point and each device. The Control Point coordinates
the operation of each device to achieve an overall, synchronized, end-user effect. The individual devices do
not interact directly with each another. All of the coordination between the devices is performed by the
Control Point and not the devices themselves.

UPnP AV Architecture: 1 – Document Version 1.1 7

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Device 2Device 1

Control Point

UPnP Actions

Figure 1: Typical UPnP Device Interaction Model

AV
Control Point

Out-of-Band
Transfer Protocol

UPnP Actions AV
Device 2

(Sink)

AV
Device 1
(Source)

Figure 2: UPnP AV Device Interaction Model

Most AV scenarios involve the flow of (entertainment) content (i.e. a movie, song, picture, etc.) from one
device to another. As shown in Figure 2, an AV Control Point interacts with two or more UPnP devices
acting as source and sink, respectively. Although the Control Point coordinates and synchronizes the
behavior of both devices, the devices themselves interact with each other using a non-UPnP (“out-of-
band”) communication protocol. The Control Point uses UPnP to initialize and configure both devices so
that the desired content is transferred from one device to the other. However, since the content is
transferred using an “out-of-band” transfer protocol, the Control Point is not directly involved in the actual
transfer of the content. The Control Point configures the devices as needed, triggers the flow of content,
then gets out of the way. Thus, after the transfer has begun, the Control Point can be disconnected without
disrupting the flow of content. In other words, the core task (i.e. transferring the content) continues to
function even without the Control Point present.

UPnP AV Architecture: 1 – Document Version 1.1 8

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

As described in the above scenario, three distinct entities are involved: the Control Point, the source of the
media content (called the “MediaServer”), and the sink for the content (called the “MediaRenderer”).
Throughout the remainder of the document, all three entities are described as if they were independent
devices on the network. Although this configuration may be common (i.e. a remote control, a VCR, and a
TV), the AV Architecture supports arbitrary combinations of these entities within a single physical device.
For example, a TV can be treated as a rendering device (e.g. a display). However, since most TVs contain a
built-in tuner, the TV can also act as a server device because it could tune to a particular channel and send
that content to a MediaRenderer [MR] (e.g. its local display or some remote device such as a tuner-less
display). Similarly, many MediaServers and/or MediaRenderers may also include Control Point
functionality. For example, an MP3 Renderer will likely have some UI controls (e.g. a small display and
some buttons) that allow the user to control the playback of music.

UPnP AV Architecture: 1 – Document Version 1.1 9

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

3. Playback Architecture

Figure 3 General Device Architecture aka the 3-Box model

The most common task that end-users want to perform is to render (i.e. play) individual items of content on
a specific rendering device. As shown in Figure 3, the content playback scenario involves three distinct
UPnP components: a MediaServer [MS], a MediaRenderer, and a UPnP Control Point. These three
components (each with a well-defined role) work together to accomplish the task. In this scenario, the
MediaServer contains (entertainment) content that the user wants to render (e.g. display or listen to) on the
MediaRenderer. The user interacts with the Control Point’s UI to locate and select the desired content on
the MediaServer and to select the target MediaRenderer.

The MediaServer contains or has access to a variety of entertainment content, either stored locally or stored
on an external device that is accessible via the MediaServer. The MediaServer is able to access its content
and transmit it to another device via the network using some type of transfer protocol. The content exposed
by the MediaServer may include arbitrary types of content including video, audio, and/or still images. The
content is transmitted over the network using a transfer protocol and data format that is that is understood
by the MediaServer and MediaRenderer. MediaServers may support one or multiple transfer protocols and
data formats for each content item or be able to convert the format of a given content item into another
formats on the fly. Examples of a MediaServer include a VCR, CD/DVD player/jukebox, camera,
camcorder, PC, set-top box, satellite receiver, audio tape player, etc.

The MediaRenderer obtains content from a MediaServer via network. Examples of a MediaRenderer
include TV, stereo, network-enabled speakers, MP3 players, Electronic Picture Frame (EPF), a music-
controlled water fountain, etc.. The type of content that a MediaRenderer can receive depends on the
transfer protocols and data formats that it supports. Some MediaRenderers may only support one type of

UPnP AV Architecture: 1 – Document Version 1.1 10

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

content (e.g. audio or still images), where as other MediaRenderers may support a wide variety of content
including video, audio, still images.

The Control Point coordinates and manages the operation of the MediaServer and MediaRenderer as
directed by the user (e.g. play, stop, pause) in order to accomplish the desired task (e.g. play “MyFavorite”
music). Additionally, the Control Point provides the UI (if any) for the user to interact with in order to
control the operation of the device(s) (e.g. to select the desired content). The layout of the Control Point’s
UI and the functionality that it exposes is implementation dependent and determined solely by the Control
Point’s manufacturer. Some examples of a Control Point might include a TV with a traditional remote
control or a wireless PDA-like device with a small display.

Note: The above descriptions talk about devices “sending/receiving content to/from the home network.” In
the context of the AV Architecture, this includes point-to-point connections such as an RCA cable that is
used to connect a VCR to a TV. The AV Architecture treats this type of connection as a small part (e.g.
segment) of the home network. Refer to the ConnectionManager Service [CM] for more details.

As described above, the AV Architecture consists of three distinct components that perform well-defined
roles. In some cases, these components will exist as separate, individual UPnP devices. However, this need
not be the case. Device manufacturers are free to combine any of these logical entities into a single
physical device. In such cases, the individual components of these combo devices may interact with each
other using either the standard UPnP control protocols (e.g. SOAP over HTTP) or using some private
communication mechanism. In either case, the function of each logical entity remains unchanged.
However, in the later case, since the communication between the logical entities is private, the individual
components will not be able to communicate with other UPnP AV devices that do not implement the
private protocol.

As shown in Figure 3, the Control Point is the only component that initiates UPnP actions. The Control
Point requests to configure the MediaServer and MediaRenderer so that the desired content flows from the
MediaServer to the MediaRenderer (using one of the transfer protocols and data formats that are supported
by both the MediaServer and MediaRenderer). The MediaServer and MediaRenderer do invoke any UPnP
actions to the Control Point. However, if needed, the MediaServer and/or MediaRenderer may send event
notifications to the Control Point in order to inform the Control Point of a change in the
MediaServer’s/MediaRenderer’s internal state.

The MediaServer and MediaRenderer do not control each other via UPnP actions. However, in order to
transfer the content, the MediaServer and MediaRenderer use an “out-of-band” (e.g. a non-UPnP) transfer
protocol to directly transmit the content. The Control Point is not involved in the actual transfer of the
content. It simply configures the MediaServer and MediaRenderer as needed and initiates the transfer of
the content. Once the transfer begins, the Control Point “gets out of the way” and is no longer needed to
complete the transfer.

However, if desired by the user, the Control Point is capable of controlling the flow of the content by
invoking various AVTransport actions such as Stop, Pause, FF, REW, Skip, Scan, etc. Additionally, the
Control Point is also able to control the various rendering characteristics on the Renderer device such as
Brightness, Contrast, Volume, Balance, etc.

3.1. Media Server
The MediaServer is used to locate content that is available via the home network. MediaServers include a
wide variety of devices including VCRs, DVD players, satellite/cable receivers, TV tuners, radio tuners,
CD players, audio tape players, MP3 players, PCs, etc. A MediaServer’s primary purpose is to allow
Control Points to enumerate (i.e. browse or search for) content items that are available for the user to
render. The MediaServer contains a ContentDirectory Service [CDS], a ConnectionManager Service [CM],
and an optional AVTransport Service [AVT] (depending on the supported transfer protocols).

UPnP AV Architecture: 1 – Document Version 1.1 11

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Some MediaServers are capable of transferring multiple content items at the same time, e.g. a hard-disk-
based audio jukebox may be able to simultaneously stream multiple audio files to the network. In order to
support this type of MediaServer, the ConnectionManager assigns a unique Connection ID to each
“connection” (i.e. each stream) that is made. This ConnectionID allows a third-party Control Points to
obtain information about active connections of the MediaServer.

3.1.1. Content Directory Service
This service provides a set of actions that allow the Control Point to enumerate the content that the Server
can provide to the home network. The primary action of this service is ContentDirectory::Browse(). This
action allows Control Points to obtain detailed information about each Content Item that the Server can
provide. This information (i.e. meta-data) includes properties such as its name, artist, date created, size, etc.
Additionally, the returned meta-data identifies the transfer protocols and data formats that are supported by
the Server for that particular Content Item. The Control Point uses this information to determine if a given
MediaRenderer is capable of rendering that content in its available format.

3.1.2. ConnectionManager Service
This service is used to manage the connections associated with a particular device. The primary action of
this service (within the context of a MediaServer) is ConnectionManager::PrepareForConnection().
When implemented, this optional action is invoked by the Control Point to give the Server an opportunity
to prepare itself for an upcoming transfer. Depending on the specified transfer protocol and data format,
this action may return the InstanceID of an AVTransport service that the Control Point can use to control
the flow of this content (e.g. Stop, Pause, Seek, etc). As described below, this InstanceID is used to
distinguish multiple (virtual) instances of the AVTransport service, each of which is associated with a
particular connection to Renderer. Multiple (virtual) instances of the AVTransport service allow the
MediaServer to support multiple Renderers at the same time. When the Control Point wants to terminate
this connection, it should invoke the MediaServer’s ConnectionManager::ConnectionComplete() action
(if implemented) to release the connection.

If the ConnectionManager::PrepareForConnection() action is not implemented, the Control Point is
only able to support a single Renderer at an given time. In this case, the Control Point should use
InstanceID=0.

3.1.3. AVTransport Service
This (optional) service is used by the Control Point to control the “playback” of the content that is
associated with the specified AVTransport. This includes the ability to Stop, Pause, Seek, etc. Depending
on the supported transfer protocols and/or data formats, a MediaServer may or may not implement this
service. If supported, the MediaServer can distinguish between multiple instances of the service by using
the InstanceID that is included in each AVTransport action. New instances of the AVTransport service are
created via the ConnectionManager’s ConnectionManager::PrepareForConnection() action. A new
Instance Id is allocated for each new Service Instance.

3.2. MediaRenderer
The MediaRenderer is used to render (e.g. display and/or listen to) content obtained from the home
network. This includes a wide variety of devices including TVs, stereos, speakers, hand-held audio players,
music controlled water-fountain, etc. Its main feature is that it allows the Control Point to control how
content is rendered (e.g. Brightness, Contrast, Volume, Mute, etc). Additionally, depending on the transfer
protocol that is being used to obtain the content from the network, the MediaRenderer may also allow the
user to control the flow of the content (e.g. Stop, Pause, Seek, etc). The MediaRenderer includes a

UPnP AV Architecture: 1 – Document Version 1.1 12

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Rendering Control Service [RCS], a ConnectionManager Service, and an optional AVTransport Service
(depending on which transfer protocols are supported).

In order to support rendering devices that are capable of handling multiple content items at the same time
(e.g. an audio mixer such as a Karaoke device), the Rendering Control and AVTransport Services contain
multiple independent (logical) instances of these services. Each (logical) instance of these services is bound
to a particular incoming connection. This allows the Control Point to control each incoming content
independently from each other.

Multiple logical instances of these services are distinguished by a unique ‘InstanceID’ which references
the logical instance. Each action invoked by the Control Point contains the Instance ID that identifies the
correct instance.

3.2.1. RenderingControlService
This service provides a set of actions that allow the Control Point to control how the Renderer renders a
piece of incoming content. This includes rendering characteristics such as Brightness, Contrast, Volume,
Mute, etc. The Rendering Control service supports multiple, dynamic instances, which allows a Renderer
to “mix together” one or more content items (e.g. a Picture-in-Picture window on a TV or an audio mixer
device). New instances of the service are created by the ConnectionManager::PrepareForConnection()
action. If the ConnectionManager::PrepareForConnection() action is not implemented the default value
0 should be used for InstanceID.

3.2.2. ConnectionManagerService
This service is used to manage the connections associated with a device. Within the context of a
MediaRenderer, the primary action of this service is the ConnectionManager::GetProtocolInfo() action.
This action allows a Control Point to enumerate the transfer protocols and data formats that are supported
by the MediaRenderer. This information is used to predetermine if a MediaRenderer is capable of
rendering a specific content item. A MediaRenderer may also implement the optional
ConnectionManager::PrepareForConnection() action. This action is invoked by the Control Point to
give the Render an opportunity to prepare itself for an upcoming transfer. Additionally, this action assigns
a unique ConnectionID that can be used by a 3rd-party Control Point to obtain information about the
connections that the MediaRenderer is using. Also, depending on the specified transfer protocol and data
format being used, this action may return a unique AVTransport InstanceID that the Control Point can use
to control the flow of the content (e.g. Stop, Pause, Seek, etc). (Refer to the AVTransport section below for
additional details). Lastly, the ConnectionManager::PrepareForConnection() action also returns a
unique Rendering Control InstanceID which can be used by the Control Point to control the rendering
characteristics of the associated content as described above. When the Control Point wants to terminate a
connection, it should invoke the Renderer’s ConnectionManager::ConnectionComplete() action (if
implemented) to release the connection. If the ConnectionManager::PrepareForConnection() action is
not implemented the default value 0 should be used for InstanceID.

3.2.3. AVTransport Service
This (optional) service is used by the Control Point to control the flow of the associated content. This
includes the ability to Play, Stop, Pause, Seek, etc. Depending on transfer protocols and/or data formats
that are supported, the Renderer may or may not implement this service. In order to support
MediaRenderers that can simultaneously handle multiple content items, the AVTransport service may
support multiple logical instances of this service. As described above, AVTransport InstanceIDs are
allocated by the ConnectionManager::PrepareForConnection() action to distinguish between multiple
service instances.

UPnP AV Architecture: 1 – Document Version 1.1 13

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

3.3. Control Point
Control Points coordinate the operation of the MediaServer and the MediaRenderer, usually in response to
user interaction with the Control Point’s UI. A Control Point is not a UPnP device, e.g. it is not visible as a
device on the network, since it does not provide any UPnP services. Conversely, the Control Point invokes
services on other UPnP devices in order to trigger some desired behavior of the remote device.

The following describes a generic Control Point algorithm that can be used to interact with a wide variety
of MediaServer and MediaRenderer implementations.

1. Discover AV Devices: Using UPnP’s Discovery mechanism, MediaServers and MediaRenderers
in the home network are discovered.

2. Locate Desired Content: Using the Server’s ContentDirectory::Browse() or
ContentDirectory::Search() actions, a desired Content Item is located. The information returned
by ContentDirectory::Browse()/Search() includes the transfer protocols and data formats that
the MediaServer supports to transfer the content to the home network.

3. Get Renderer’s Supported Protocols/Formats: Using the MediaRenderer’s
ConnectionManager::GetProtocolInfo() action a list of transfer protocols and data formats
supported by the MediaRenderer is returned to the Control Point.

4. Compare/Match Protocols/Formats: The protocol/format information returned by the
ContentDirectory for the desired Content Item is matched with the protocol/format information
returned by the MediaRenderer’s ConnectionManager::GetProtocolInfo() action. The Control
Point selects a transfer protocol and data format that are supported by both the MediaServer and
MediaRenderer.

5. Configure Server/Renderer: The device’s ConnectionManager::PrepareForConnection()
action (if implemented) informs the MediaServer and MediaRenderer that an outgoing/incoming
connection is about to be made using the specified transfer protocol and data format that was
previously selected. Depending on the selected transfer protocol, either the MediaServer or
MediaRenderer will return an AVTransport InstanceID. This InstanceID is used in conjunction
with the device’s AVTransport Service (i.e. the device returning the AVTransport InstanceID) to
control the flow of the content (e.g. AVTransport::Play(), AVTransport::Stop(),
AVTransport::Pause(), AVTransport::Seek(), etc). Additionally, the Renderer will return a
Rendering Control InstanceID that is used by the Control Point to control the Rendering
characteristics of the content.

Note: Since ConnectionManager::PrepareForConnection() is an optional action, there may be
situations in which either the MediaServer and/or MediaRenderer do not implement
ConnectionManager::PrepareForConnection(). When this occurs and neither MediaServer nor
MediaRenderer return an AVTransport InstanceID, the Control Point uses an InstanceID=0 to
control the flow of the content. Refer to the ConnectionManager and AVTransport Service [AVT]
for details.

6. Select Desired Content: Using the AVTransport service (whose InstanceID is returned by either
the Server or Renderer), invoke the AVTransport ::SetAVTransportURI() action to identify the
content item that needs to be transferred.

7. Start Content Transfer: Using the AVTransport service, invoke one of the transport control
actions as desired by the user (e.g. AVTransport::Play(), AVTransport::Stop(),
AVTransport::Seek(), etc).

8. Adjust Rendering Characteristics: Using the MediaRenderer’s Rendering Control service
[RCS], invoke any rendering control actions as desired by the user (e.g. adjust brightness,
contrast, volume, mute, etc).

UPnP AV Architecture: 1 – Document Version 1.1 14

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

9. Repeat: Select Next Content: Using either the AVTransport::SetAVTransportURI() or
AVTransport::SetNextAVTRansportURI() actions, identify the next content item that is to be
transferred from the same Server to the same Renderer. Repeat as needed.

10. Cleanup Server/Renderer: When the session is terminated and MediaServer and
MediaRenderer are no longer needed in the context of the session, the MediaServer’s and
MediaRenderer’s ConnectionManager::ConnectionComplete() action is invoked to close the
MediaServer’s connection.

Based on the interaction sequence shown above, the following diagram chronologically illustrates the
typical interaction sequence between the Control Point and the MediaServer and MediaRenderer.

UPnP AV Architecture: 1 – Document Version 1.1 15

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Any RCS rendering
control operation
(e.g. volume, mute,
brightness, contrast)

Content Objects

CDS::Browse/Search()

Protocol/Format List

CM::GetProtocolInfo()

AVT InstanceID

CM::PrepareForConnection()

AVT,RCS InstanceIDs

CM::PrepareForConnection()

RCS::SetVolume()

Any AVT flow control
operation, as needed
(e.g. stop,pause,seek)

CM::ConnectionComplete()

CM::ConnectionComplete()

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Out-Of-Band

Content Transfer

<invoke only one>

AVT::SetAVTransportURI()

AVT::Play()

<invoke only one>

Repeat as Needed

Figure 4 General Interaction Diagram of the 3-Box model

UPnP AV Architecture: 1 – Document Version 1.1 16

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

The 3-Box model is the most comprehensive UPnP interaction model. It is also possible to combine the
control point with services, to make a combo device. These scenarios are known as 2-Box models and are
explained below.

3.3.1. 2-Box model: Control Point with Decoder

Figure 5 Control Point with Decoder

As shown in Figure 5, the content playback scenario involves two distinct UPnP components: a
MediaServer, and a UPnP Control Point with Decoder. These two components (each with a well-defined
role) work together to accomplish the task. In this scenario, the MediaServer contains (entertainment)
content that the user wants to render (e.g. display or listen to) on the apparatus. The user interacts with the
Control Point’s UI to locate and select the desired content on the MediaServer and to play it back by means
of its own Decoder.

The state of the system can not be tracked by any other UPnP CPs, since the out of band transfer is not
registered at the server or the playback device due to the absence of the AVTransport service. This scenario
explains the most simplified UPnP AV interaction model.

Note that the Control Point in this scenario only interacts with the MediaServer services.

Note that the “Sink” in this scenario is not a MediaRenderer and not even a UPnP device.

UPnP AV Architecture: 1 – Document Version 1.1 17

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

3.3.2. 2-Box model: Control Point with Content

Isochronous or Asychronous
Push or Pull

Content

Transfer Server

Decoder

AVTransport

Transfer Client

(UI Application)

RenderingControl

ConnectionManager

SinkSource

Figure 6 Control Point With Content

As shown in Figure 6, the content playback scenario involves two distinct UPnP components: a Control
Point with content and a MediaRenderer. These two components (each with a well-defined role) work
together to accomplish the task. In this scenario, the Control Point has capabilities like a normal
MediaServer for serving content and contains (entertainment) content that the user wants to render (e.g.
display or listen to) on the Device. The user interacts with the UI on the Control Point to locate and select
the desired content by means of internal communication and to play it back using the MediaRenderer.

Note that the Control Point in this scenario only interacts with the MediaRenderer services.

3.4. Tracking streams in the network
The out of band streams are trackable by other UPnP Control Points on the network if:

• The optional ConnectionManager::PrepareForConnection() function on a ConnectionManager
service is implemented (either on the Media Server or the Media Renderer side).

• Or when the playback device contains an AVTransport service.

UPnP AV Architecture: 1 – Document Version 1.1 18

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

4. Example Playback Scenarios
As described above, the AV Architecture is designed to support arbitrary transfer protocols and data
formats. However, in some cases, certain devices are intentionally designed to support a single transfer
protocol and/or data format only. For example, a manufacturer may want to deliver a product that targets a
particular price-point and/or market segment. In these cases, some AV devices may combine one or more
logical entities into a single physical device.

The following sub-sections illustrate the flexibility of the generic Device Interaction Model algorithm.
Each of the following interaction diagrams are variations of the generic diagram with various steps
omitted. These omitted steps are not included because the particular scenario does not require them.

4.1. 3-Box model: Isochronous-Push (IEC61883/IEEE1394)
When using an isochronous transfer protocol (e.g.IEC61883/ IEEE1394), the underlying transfer
mechanism provides real-time content transfer between the MediaServer and MediaRenderer. This ensures
that individual packets of content are transferred within a certain (relatively small) period of time. This
real-time behavior allows the MediaRenderer to provide the user with smooth-flowing rendering of the
content without implementing a read-ahead buffer. In this environment, the flow of the content is
controlled by the MediaServer. The MediaRenderer immediately renders the content that it receives from
the MediaServer. Refer to the diagram below for details.

UPnP AV Architecture: 1 – Document Version 1.1 19

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Content Objects

CDS::Browse/Search()

Protocol/Format List

CM::GetProtocolInfo()

AVT InstanceID

CM::PrepareForConnection()

RCS InstanceID

CM::PrepareForConnection()

RCS::SetVolume()

CM::ConnectionComplete()

CM::ConnectionComplete()

Out-Of-Band

Content Transfer

AVT::SetAVTransportURI()

AVT::Play()

Isochronous-Push
requires Server (not
Renderer) to return
AVT InstanceID.
Renderer only returns
an RCS InstanceID.

Any RCS rendering
control operation, as
needed (e.g. volume,
brightness, contrast)

Any AVT flow control
operation, as needed
(e.g. seek,stop,pause)

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

Figure 7 3-Box Model: Isochronous-Push transfer protocols

UPnP AV Architecture: 1 – Document Version 1.1 20

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

4.2. 3-Box model: Asynchronous-Pull (e.g. HTTP GET)
In this example, the transfer protocols that are used do not provide real-time guarantees. The arrival of a
particular packet of content is unpredictable relative to the previous packets. Unless corrected, this causes
the content to be rendered with certain undesirable anomalies (e.g. detectable latencies, jitter, etc.). In order
to compensate for these types of transfer mechanisms, a Renderer device typically implements a read-ahead
storage buffer in which the Renderer reads-ahead of the current output and places the data into a buffer
until the contents are needed. This allows the MediaRenderer to smooth out any rendering anomalies that
might otherwise exist. Since the MediaRenderer must control the flow of the content, it is obligated to
provide the instance of the AVTransport service that will be used.

UPnP AV Architecture: 1 – Document Version 1.1 21

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Content Objects

CDS::Browse/Search()

Protocol/Format List

CM::GetProtocolInfo()

CM::PrepareForConnection()

AVT,RCS InstanceIDs

CM::PrepareForConnection()

RCS::SetVolume()

CM::ConnectionComplete()

CM::ConnectionComplete()

Out-Of-Band

Content Transfer

AVT::SetAVTransportURI()

AVT::Play()

Asychronous-Pull
requires Renderer
(not Server) to return
a AVT InstanceID.
Server does not return
an AVT InstanceID

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

Any RCS rendering
control operation, as
needed (e.g. volume,
brightness, contrast)

Any AVT flow control
operation, as needed
(e.g. seek,stop,pause)

Figure 8 3-Box model:Asynchronus-Pull transfer protocol

UPnP AV Architecture: 1 – Document Version 1.1 22

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

4.3. 2-Box model: Control Point with Decoder using
Isochronous-Push (e.g. IEEE-1394)

The following example illustrates how the general Device Interaction Algorithm is used to handle devices
that also include integrated Control Point functionality (e.g. a TV), that uses the AVTranport Service from
the MediaServer to push the content to itself.

UPnP AV Architecture: 1 – Document Version 1.1 23

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Content Objects

CDS::Browse/Search()

AVT InstanceID

CM::PrepareForConnection()

CM::ConnectionComplete()

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Out-Of-Band

Content Transfer

AVT::SetAVTransportURI()

AVT::Play()

Repeat as Needed

Control Point knows which
protocols/formats are
supported by the (internal)
Renderer device.

Renderer prepares itself to
receive the content

Any RCS rendering control
operation, as needed (e.g.
volume, brightness, contrast)

Any AVT flow control
operation, as needed
(e.g. seek,stop,pause)

Figure 9 2-Box model: Control Point with Decoder using Isochronous-Push

UPnP AV Architecture: 1 – Document Version 1.1 24

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

4.4. 2-Box model: Control Point with Decoder using
Asynchronous-Pull (e.g. HTTP GET)

Rendering characteristics (e.g.
volume, brightness) controlled
internally as direct by user.

Content Objects

CDS::Browse/Search()

CM::PrepareForConnection()

CM::ConnectionComplete()

Out-Of-Band

Content Transfer

Asychronous/Pull requires
Renderer (not Server) to
return an AVTransport
InstanceID.

Renderer prepares itself to
receive the desired content
and starts/controls the flow of
the content as directed by
user.

Control Point knows which
protocols/formats are
supported by the internal
Renderer device.

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

Figure 10 2-Box model: Control Point with Decoder using Asynchronous-Pull

4.4.1. Minimal Implementation
In some cases the server only implements minimal functionality. In this case the interaction model is
somewhat simpler. In this 2-Box model, the Control Point is being used to browse/search content on a
MediaServer. This is the same as above but without the ConnectionManager::PrepareForConnection()
and ConnectionManager::ConnectionComplete() actions. The actual validation of the protocol matching
is done internally in the Control Point with Decoder. The content transfer and playback are invisible for
other control points.

UPnP AV Architecture: 1 – Document Version 1.1 25

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Content Objects

CDS::Browse/Search()

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Out-Of-Band

Content Transfer

Repeat as Needed

Device prepares itself to
receive the desired content
and starts/controls the flow of
the content as directed by
user

Control Point knows which
protocols/formats are
supported by the internal
Renderer device.

CM::PrepareForConnection() not
implemented by Media Server

Figure 11 2-Box model: Minimal Implementation

4.5. 2-Box model: Control Point with Content using
Isochronous-Push (e.g. IEEE-1394)

UPnP AV Architecture: 1 – Document Version 1.1 26

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Any RCS rendering
control operation (e.g.
SetBrightness)

Protocol/Format List

CM::GetProtocolInfo()

RCS InstanceID

CM::PrepareForConnection()

RCS::SetVolume()

CM::ConnectionComplete()

Out-Of-Band

Content Transfer

Isochronous-Push requires
Server to provide AVT
InstanceID, so Renderer only
returns an RCS InstanceID

 Choose Matching
Protocol and Format

 Content Transfer
Complete

Repeat as Needed

Control Point knows which
protocols/formats are
supported by the internal
Server device.

Server prepares itself to
transmit the desired content
and starts/controls the flow of
the content as directed by
user

Figure 12 2-Box model: Control Point With Content using Isochronous-Push

UPnP AV Architecture: 1 – Document Version 1.1 27

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

4.6. 2-Box Model: Control Point with Content using
Asynchronous-Pull (e.g. HTTP GET)

Figure 13 2-Box model: Control Point with Content using Asynchronous-Pull

UPnP AV Architecture: 1 – Document Version 1.1 28

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

4.7. No ConnectionManager::PrepareForConnection() Action
In some circumstances, vendors may choose to not implement the
ConnectionManager::PrepareForConnection() action, which (among other tasks) provides a mechanism
for the Control Point to obtain the InstanceID of the AVTransport and Rendering Control Service to use
for controlling the flow and rendering characteristics of the content. When the
ConnectionManager::PrepareForConnection() action is not implemented, the Control Point must “fall-
back” and assume an InstanceID=0. The following diagram illustrates how the general Device Interaction
Model gracefully scales to handle this situation.

UPnP AV Architecture: 1 – Document Version 1.1 29

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

Figure 14 3-Box model: no AVTransport::PrepareForConnection() function

UPnP AV Architecture: 1 – Document Version 1.1 30

Copyright © 2008 Contributing Members of the UPnP Forum. All rights Reserved.

5. Recording Architecture
The UPnP AV Architecture defines a rudimentary Recording capability. A AVTransport::Record()
action is defined within the AVTranport Service. As content is being transferred from the MediaServer to
the MediaRenderer, a Control Point may issue the ‘Record’ action. This results in the device ‘recording’
that content to some type of unspecified storage. The details of the Record feature depend completely on
the recording device and can range dramatically from device to device.

